\noindent{\bf Ans}: Let \begin{eqnarray*} &&g_1({\bf x}) = \frac{1}{5}\left( 0.02 - \sin\left( \frac{6y}{1+y^2} \right) \right)\\ &&g_2({\bf x}) = \frac{1}{2}(0.01-\sin(x))(1+x) \end{eqnarray*} and \begin{eqnarray*} &&{\bf G}({\bf x}) = (g_1({\bf x}),\;g_2({\bf x}))^t\\ &&\bar{{\bf G}}({\bf x}) = \alpha {\bf x} + (I-\alpha){\bf G}({\bf x}) \end{eqnarray*} where $\alpha$ is a $2 \times 2$ matrix and $I$ is the identity matrix. One could choose $$ \alpha = (D{\bf G}({\bf x}_0)-I)^{-1}D{\bf G}({\bf x}_0). $$ {\bf(up to here = 5 pts)} If ${\bf x}_0 = (0,\;0)^t$, then the iteration gives $$ {\bf x}_* \approx (-4.882452175e-03,\;7.404885005e-03)^t.\;\textrm{{\bf(10 pts)}} $$