\noindent{\bf Answer}: $[\textrm{Cubic}]$ One solution is given by (there may be others) $$x_{n+1} = g(x_n), \quad g(x) = x - \frac{f(x)}{f'(x)} - \frac{f''(x)}{2f'(x)}\left[\frac{f(x)}{f'(x)}\right]^2. \quad \text{{\bf (5 pts)}}$$ % \underline{Part 2} (8 pts): Check that $g'(p)=g''(p)=0$ and $g^{(3)}(p) \neq 0$, and then compute $$\lim_{n \rightarrow \infty} \frac{|p_{n+1}-p|}{|p_n-p|^3} = \frac{|g^{(3)}(p)|}{3!}. \quad \text{{\bf (10 pts)}}$$ $[\textrm{Quadratic}]$ $$x_{n+1} = g(x_n), \quad g(x) = x - \frac{f(x)}{f'(x)}. \quad \text{{\bf (2 pts)}}$$ %\underline{Part 2} (4 pts): Check that $g'(p)=0$ and $g''(p) \neq 0$, and then compute $$\lim_{n \rightarrow \infty} \frac{|p_{n+1}-p|}{|p_n-p|^2} = \frac{|g''(p)|}{2!}. \quad \text{{\bf (5 pts)}} $$