\noindent{\bf Ans}: \begin{enumerate} \item Direct fixed point iteration with $g(x) = g_0 (x) = 0.01-3\sin(x)$ does not converge. Instead, a proper choice of $\beta$ and $g(x) = \beta x + (1 - \beta)g_0(x)$ will result in local convergence {\bf (2 pts)}. One could choose $$ \beta = \frac{g_0'(\xi)}{g_0'(\xi)-1} $$ for some $\xi$ near 0. Since $\xi \approx 0$, $g_0'(\xi) \approx -3$, we take $\beta = \frac{-3}{-3-1} = \frac{3}{4}$. {\bf (2 pts)} First check $g([-{1\over 2}, {1 \over 2}]) \subset [-{1\over 2}, {1 \over 2}]$. $$ -\frac{1}{2} < -0.012931... = g(-\frac{1}{2}) \leq g(x) \leq g(\frac{1}{2}) = 0.017931... < \frac{1}{2}\;\textrm{{\bf (3 pts)}} $$ Second check $|g'(x)| \leq k$ for some $k \in (0,1)$, $\forall\;x \in (-{1\over 2}, {1 \over 2})$. $$ |g'(x)| = \bigg|\frac{3}{4}(1-\cos(x))\bigg| \leq \frac{3}{4} < 1\;\forall\;x \in (-{1\over 2}, {1 \over 2})\;\textrm{{\bf (3 pts)}} $$ \item Estimation {\bf (3 pts)} Result $N$ {\bf (2 pts)}\\ $[\textrm{Method 1}]$ $$ |x_n-x_*| \leq k^n\max\{x_0-a,\;b-x_0\} =\left(\frac{3}{4}\right)^n\max\left\{0-\left(-\frac{1}{2}\right),\;\frac{1}{2}-0\right\} =\left(\frac{3}{4}\right)^n\frac{1}{2} < 10^{-30} $$ $$ \Rightarrow n > \frac{\log_{10}2-30}{\log_{10}\frac{3}{4}} = 237.71... \Rightarrow N = 238. $$ $[\textrm{Method 2}]$ $$ |x_n-x_*| \leq \frac{k^n}{1-k}|x_1-x_0| =4\left(\frac{3}{4}\right)^n|g(0)-0| =\left(\frac{3}{4}\right)^n0.01 < 10^{-30} $$ $$ \Rightarrow n > \frac{28}{\log_{10}\frac{4}{3}} = 224.11... \Rightarrow N = 225. $$