\noindent{\bf Ans}: Relative error $ = \left| {e_n \over p_n^{\rm exact}} \right |$. ({\bf 3 pts}) Note that $$ e_n \approx = d_1 1^n + d_2 2^n + d_3 ( {1\over 3} )^n \qquad {\bf (3 pts)} $$ $d_1$, $d_2$ and $d_3$ are of $O(p_i - fl(p_i))$, $i= 0,1,2$. Therefore $d_1$, $d_2$ and $d_3$ are of $O(\delta)$.{\bf (1 pts)}. Therefore, relative error $ = {O(\delta) 1^n + O(\delta) 2^n + O(\delta) ( {1\over 3} )^n \over c_1 1^n + c_2 2^n + c_3 ( {1\over 3} )^n }. $ It is stable if and only if $c_2 \neq 0$. ({\bf 3 pts})