Numerical Analysis I, Fall 2020 (http://www.math.nthu.edu.tw/~wangwc/)

Brief Answers to Quiz 05

1:20-2:10PM, Dec 22, 2020.

1. Use any desingularization method to evaluate the improper integral $\int_0^1 \frac{e^x}{\sqrt{x}} dx$ with a composite quadrature rule of 4th order accuracy. The answer is $2.9 \cdots$. Demonstrate numerically that the result is indeed 4th order accurate.

Ans:

$$\int_0^1 \frac{e^x}{\sqrt{x}} \, dx \approx 2.92530349181436 \ (25 \text{ pts})$$

Method 1:

See page 252-253 of the textbook.

Method 2:

See page 7 of NA20f_201204_Supplements_to_improper_integrals.pdf

2. Use trapezoidal rule to discretize the integral equation

$$u + \int_0^1 \exp(-|x - t|) \ u(t) \ dt = f$$

on uniformly spaced nodes $0 = x_0 < x_1 < \cdots < x_{10} = 1$, $x_j - x_{j-1} = \frac{1}{10}$, to get a linear system of the form Cu = f. Construct the matrix C and evaluate $\sum_{i,j} c_{ij}$.

Ans:

$$a = 0, b = 1, m = 10, h = (b - a)/m,$$

In matlab or C, let $w(j) = \begin{cases} \frac{h}{2}, & j = 1, m + 1 \quad (\text{ or } j = 0, m) \\ h, & 2 \le j \le m. \quad (\text{ or } 1 \le j \le m - 1.) \end{cases}$
Then $c_{ij} = \exp(-|i - j|h) * w(j) + \delta_{ij}.$ (15 pts)
 $\sum_{ij} c_{ij} \approx 18.98582400029024$ (10 pts)

3. Let A be an $M \times M$ matrix with $a_{ij} = 0$ except for $-2 \leq i - j \leq 2$. Suppose that Ax = b can be solved using Gaussian elimination without pivoting. Find the leading order operation count (multiplication/division only) kM^p for the elimination part (ignore the backward substitution part). Give all details.

Ans:

There are 2M (to leading order) sub-diagonal elements to be eliminated. Each requires 4 multiplications/divisions (1 for calculating the ratio, 1 for each of the 2 super-diagonal elements, and 1 for the right hand side).

Total = 8M multiplications/divisions. (25 pts)

4. Let B be an $N^2 \times N^2$ matrix with $b_{ij} = 0$ except for $i - j = 0, \pm 1$ and $\pm N$. Suppose that Bx = c can be solved using Gaussian elimination without pivoting. Find the leading order operation count (multiplication/division only) kN^p for the elimination part (ignore the backward substitution part). Give all details.

Ans:

The zeros between i - j = -N and i - j = -1 and between i - j = 1 and i - j = N are filled (become nonzero) after 2N steps of Gaussian elimination. The operation count is the same order as if $b_{ij} = 0$ except for $|i - j| \leq N$. (10 pts)

In this case, there are $N^2 \times N$ (to leading order) sub-diagonal elements to be eliminated. Each requires N (to leading order) multiplications/divisions (1 for calculating the ratio, 1 for each of the N super-diagonal elements, and 1 for the right hand side).

Total = N^4 multiplications/divisions. (15 pts)