
Numerical Analysis I, Fall 2020 (http://www.math.nthu.edu.tw/˜wangwc/)

Brief Solution to Midterm 02

Dec 09, 2020.

1. (10 pts) State (need not prove) the error formula of Lagrangian interpolation for smooth
functions defined on [a, b] with data given on uniformly spaced nodes x0, · · · , xn on [a, b]
where xj = a+ jh, h = (b− a)/n.

Ans:

Let Pn(x) be the nth Lagrange interpolating polynomail. The error formula is given
by

f(x) = Pn(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn)

where ξ(x) ∈ (a, b).

2. (12 pts) Let Pn be the degree n interpolating polynomial of f(x) =
1

1 + x2
on the

uniformly spaced nodes x0, · · · , xn on [−5, 5] with xj = −5 + jh, h = 10/n. Is it true
that

max
−5≤x≤5

|f(x)− Pn(x)| → 0 as n→∞?

Use either analytic proof or numerical evidence to support your claim.

Ans: No. f (n) grows fast in n. The error formula does not guarantee convergence (4
pts).

The interpolating polynomial oscillates wildly on [−5, 5] for x 6= xi as n increases.
Some demonstration of the graph or interpolating polynomial value at a fixed x 6= xi
with n ∼ 10− 20 will do (8 pts).

3. (12 pts) Suppose that we are to construct a piecewise polynomial interpolation S(x)
such that S(xi) = f(xi), S

′(xi) = f ′(xi), i = 0, · · · , n with additional continuity
conditions for S ′′ and S ′′′ on the interior nodes x1, · · · , xn−1. If we use polynomials
of the same degree on each of the interval [x0, x1], · · · , [xn−1, xn], what is the minimal
degree needed in each interval? How many additional end conditions are needed?
Count carefully and explain (give details).

Ans: Values of S at x0, xn: one condition each.

Values of S at x1, · · ·xn−1: two conditions each.

Values of S ′ at x0, xn: one condition each.

Values of S’ at x1, · · · xn−1: two conditions each.

Continuity of S ′′ at x1, · · ·xn−1: one condition each.

Continuity of S ′′′ at x1, · · ·xn−1: one condition each.

(6 pts)



Total 6n − 2 conditions. Therefore we require minimal 6n unknowns or degree 5
polynomials on each interval and additional 2 boundary conditions (6 pts).

4. (12 pts) Let xi = 0.01∗i. Use all or part of the data (x0, sin(x0)), (x1, sin(x1)), · · · , (x100, sin(x100))
and inverse cubic spline interpolation method to find an approximate value of sin−1(0.3).
Partial credit if you use a different interpolation method.

Ans:

x = 0 : .01 : 1; y = sin(x).

Answer = spline(y, x, 0.3) = 0.3046926539299876 .

5. (12 pts) Suppose f is smooth and the data f(x), f(x±h), f(x±2h), · · · are prescribed.

(a) Find a second order approximation of f ′(x + h
2
) with minimal number of data

points and derive an error identity of the form f ′(x+h
2
)−f ′h(x+h

2
) = C1f

(n1)(ξ1)h
2.

(b) Find a fourth order approximation of f ′(x+h
2
) with minimal number of data points

and derive an error bound of the form |f ′(x+ h
2
)− f ′h(x+ h

2
)| ≤ C2|f (n2)(ξ2)|h4.

Ans:

(a) Apply Taylor expansion to f(x+ h) and f(x) around f(x+ h
2
) leads to

f(x+ h)− f(x)

h
= f ′(x+

h

2
) +

h2

24
f ′′′(ξ))(4pts).

(b) Also

f(x+ h)− f(x)

h
= f ′(x+

h

2
) +

h2

24
f ′′′(x+

h

2
) +

h4

1920
f (5)(ξ1)

It follows that f(x+2h)−f(x−h)
3h

admits a similar estimate with h = (x + h)− x replaced
by 3h = (x+ 2h)− (x− h):

f(x+ 2h)− f(x− h)

3h
= f ′(x+

h

2
) +

(3h)2

24
f ′′′(x+

h

2
) +

(3h)4

1920
f (5)(ξ2)

Therefore

f ′h(x+
h

2
) =

9

8

f(x+ h)− f(x)

h
− 1

8

f(x+ 2h)− f(x− h)

3h
(4pts).

with

f ′h(x+
h

2
) = f ′(x+

h

2
) + Eh

and

|Eh| ≤
3

512
h4|f (5)(ξ)|(4pts).
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6. (12 pts) Give formula for composite trapezoidal rule, midpoint rule and Simpson
rule using (xi, f(xi)), i = 0 · · · , n, where xj = a + jh, h = (b − a)/n (you can use
(xi−1/2, f(xi−1/2)), i = 1, · · · , n for midpoint rule if you prefer). Give corresponding
error formula of the form: Ih(a, b) − I(a, b) = C

∑
i h

pf (q)(ξi) (find C and p, q for
composite trapezoidal and midpoint rule, need not derive) and |Ih(a, b) − I(a, b)| ≤∑

iCh
p|f (q)(ξi)|. (find only p, q for composite Simpson’s rule). Need not derive if you

are sure about the answer.

Ans:

Composite Trapezoidal Rule:∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑
j=1

f(xj) + f(b)
]
− b− a

12
f ′′(µ)h2

where n is an integer, h = b−a
n

, xj = a + jh, for j = 0, 1, ..., n, and some µ ∈ (a, b) (4
pts)

Composite Midpoint Rule:∫ b

a

f(x)dx = 2h

n/2∑
j=1

f(x2j−1) +
b− a

6
f ′′(µ)h2

where n is an integer, h = b−a
n

, xj = a + jh, for j = 0, 1, ..., n, and some µ ∈ (a, b) (4
pts)

Composite Simpson’s Rule:∫ b

a

f(x)dx =
h

3

[
f(a) + 4

n/2∑
j=1

f(x2j−1) + 2

n/2−1∑
j=1

f(x2j) + f(b)
]
− b− a

180
f (4)(µ)h4

where n is an integer, h = b−a
n

, xj = a + jh, for j = 0, 1, ..., n, and some µ ∈ (a, b) (4
pts)

7. (15 pts) Use composite trapezoidal rule N1(h)to evaluate
∫ 1

0
x0.5dx and find the rate

of convergence (p in Chp) numerically. Then use Richardson extrapolation to derive
N2(h) and find the corresponding p for N2(h) numerically.

Ans:

I = N1(h) + Chp + · · ·

I = N1(2h) + C(2h)p + · · ·

p ≈ log2

I −N1(2h)

I −N1(h)
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Numerical result shows that p = 1.5. (3 pts)

Therefore
I = N1(2h) + C(2h)

3
2 + · · ·

or

I = N1(
h

2
) + C(

h

2
)
3
2 + · · ·

Use either N1(h) and N1(2h) or N1(h) and N1(
h
2
) to get

N2(h) =
2
√

2

2
√

2− 1
N1(h)− 1

2
√

2− 1
N1(2h)

or

N2(h) =
2
√

2

2
√

2− 1
N1(

h

2
)− 1

2
√

2− 1
N1(h)

Either one will do. (8 pts)

Answer(4 pts):
I = N2(h) + Chp + · · · , p = 2

8. (15 pts) Find a quadrature of the form∫ 1

−1
f(x)dx = α(f(γ) + f(−γ)) + βf(0)

with largest degree of precision p, where α, β ∈ R and 0 < γ < 1. Change the interval
to
∫ h

−h f(x)dx and find corresponding αh, βh, γh in terms of h. Under the assumption
(need not prove this assumption) that the error of this quadrature is of the form

αh(f(γh) + f(−γh)) + βhf(0) =

∫ h

−h
f(x)dx+Kf (n)(ξ)hp,

find K, n and p and predict the order of convergence for the composite quadrature
(i.e. what is q in |Ih(a, b)− I(a, b)| ≤ Chq?)

Ans:

Apply I(1) = Ih(1), I(x2) = Ih(x2) and I(x4) = Ih(x4) to get α = 5
9
, β = 8

9
and

γ =
√

3
5
.(4 pts)

Similar procedure for
∫ h

−h leads to αh = 5
9
h, βh = 8

9
h and γh =

√
3
5
h. The formula is

also exact for all x2k+1 due to symmetry. So degree of precision = 5. (3 pts)

Therefore n = 6, p = 7 and apply Ih(x6) to get K = − 1
15750

. (6 pts). And for the
order of convergence for the composite quadrature is q = 6. (2 pts)
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9. (5 pts) Use any method to find a solution of
√

1 + 0.9x−
√

1− 0.8x = 1.0× 10−10 to
15 correct digits. You need to prevent loss of accuracy. Standard methods only gives
you about 5 correct digits (and no credit).

Ans:

Apply the following identity

a2 − b2 = (a+ b)(a− b)

that avoids the subtraction of two nearly identical numbers and gives

f(x) =
1.7x√

1 + 0.9x+
√

1− 0.8x
− 10−10. (3 pts)

Then solve f(x) = 0 by any numerical method to find the solution

x∗ ≈ 1.17647058823875× 10−10. (2 pts)

10. (10 pts) It is known that the unique solution to f(x) = x+3 sin(x)−0.01 = 0 is located
near x = 0. Find a fixed point iteration that will converge for any x0 ∈ [−1

2
, 1
2
]. Show

that your method satisfies the assumptions of a relevant Theorem, but need not prove
the Theorem again. You can use the numerical values of sin(1

2
), cos(1

2
), exp(1

2
), etc. in

your proof.

Ans:

Direct fixed point iteration with x(k+1) = g
(k)
0 (x) = 0.01−3 sin(x(k)) does not converge.

Instead, a proper choice of α and g(x) = αx+(1−α)g0(x) will result in local convergence
(2 pts). One could choose

α =
g′0(ξ)

g′0(ξ)− 1

for some ξ near 0. Since ξ ≈ 0, g′0(ξ) ≈ −3, we take α = −3
−3−1 = 3

4
. (2 pts)

Since g(x) = 3
4
(x− sinx) + 0.0025, g′(x) = 3

4
(1− cos(x))

Therefore

0 <
3

4

(
1− cos(

1

2
)

)
≤ g′(x) ≤ 3

4
on [−1

2
,
1

2
].

It follows that g is an increasing function on [−1
2
, 1
2
],

−1

2
< −0.012931... = g(−1

2
) ≤ g(x) ≤ g(

1

2
) = 0.017931... <

1

2

(thus g([−1
2
, 1
2
]) ⊂ [−1

2
, 1
2
] (3 pts) ) and

|g′(x)| =
∣∣∣3
4

(1− cos(x))
∣∣∣ ≤ 3

4
= k < 1 ∀ x ∈ (−1

2
,
1

2
) (3 pts)
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