
Numerical Analysis I, Fall 2020 (http://www.math.nthu.edu.tw/˜wangwc/)

Brief Solution to Midterm 01

Oct 27, 2020.

1. (10 pts) The (fictional) one-and-half precision format uses 48 bits to store a binary
floating point number of the form±1.a1a2 · · · at×2e where aj ∈ {0, 1}, −510 ≤ e ≤ 511.
Find t and derive an upper bound for relative error caused by rounding. Express your
final answer as a real number, but need not convert it to decimal expression.

Ans:

There are total 1022 different exponents (−510 ≤ e ≤ 511).
It takes 10 bits to give 1022 or more different exponents (210 = 1024). (2 pts)
Total bits = 1 + t+ 10 = 48⇒ t = 37 (2 pts).

Let x = ±1.a1a2 · · · at . . .× 2e.
If at+1 = 0, then flround(x) = ±1.a1a2 · · · at × 2e. A bound for the relative error is

|x− flround(x)|
|x|

=
|0.at+1at+2 . . . |

|1.a1a2 . . . atat+1 . . . |
× 2−t ≤ 2−(t+1). (2 pts)

If at+1 = 1, then flround(x) = ±(1.a1a2 · · · at + 2−t)× 2e. The upper bound for relative
error becomes

|x− flround(x)|
|x|

=
|1− 0.at+1at+2 . . . |
|1.a1a2 . . . atat+1 . . . |

× 2−t ≤ 2−(t+1). (2 pts)

Therefore, an upper bound for relative error caused by rounding is 2−38 (2 pts).

2. (10 pts) Given p0, p1 and p2, the general solution to the recursion formula pn =
10
3
pn−1 − 3pn−2 + 2

3
pn−3 is pn = c11

n + c22
n + c3(

1
3
)n (need not show this). Find all

(c1, c2, c3) 6= (0, 0, 0) such that the above iteration is unstable in relative error. Explain.

Ans: Relative error =
∣∣∣ en
pexactn

∣∣∣. (3 pts)

Note that

en ≈= d11
n + d22

n + d3(
1

3
)n (3pts)

d1, d2 and d3 are of O(pi− fl(pi)), i = 0, 1, 2. Therefore d1, d2 and d3 are of O(εM).(1
pts).

Therefore, relative error =
O(εM )1n+O(εM )2n+O(εM )( 1

3
)n

c11n+c22n+c3(
1
3
)n

. It is stable if and only if c2 6= 0.

(3 pts)

3. (10 pts) The first few iteration (pi, f(pi)), i = 0, 1, 2, 3, 4 of method of false position
for some equation f(x) = 0 is given by

(0,−2), (3, 1), (∗, 2), (∗, 1), (∗, 2

9
)



Find p5 (4 digits will do). Explain.

Ans:

f(p1)f(p0) < 0⇒ a = p0, b = p1, p2 = b− f(b)
b− a

f(b)− f(a)
=
af(b)− bf(a)

f(b)− f(a)
= 2

f(p2)f(p0) < 0⇒ a = p0, b = p2, p3 = b− f(b)
b− a

f(b)− f(a)
=
af(b)− bf(a)

f(b)− f(a)
= 1

f(p3)f(p0) < 0⇒ a = p0, b = p3, p4 = b− f(b)
b− a

f(b)− f(a)
=
af(b)− bf(a)

f(b)− f(a)
=

2

3

f(p4)f(p0) < 0⇒ a = p0, b = p4. p5 = b− f(b)
b− a

f(b)− f(a)
=
af(b)− bf(a)

f(b)− f(a)
= 0.6

4. (15 pts) Use any method to find a solution of
√

1 + 0.9x−
√

1− 0.8x = 1.0× 10−10 to
15 correct digits. You need to prevent loss of accuracy. Standard methods only gives
you about 5 correct digits (and 1/3 partial credits).

Ans:

Apply the following identity

a2 − b2 = (a+ b)(a− b)

that avoids the subtraction of two nearly identical numbers and gives

f(x) =
1.7x√

1 + 0.9x+
√

1− 0.8x
− 10−10. (7 pts)

Then solve f(x) = 0 by any numerical method to find the solution

x∗ ≈ 1.17647058823875× 10−10. (8 pts)

5. (10+5 pts) It is known that the unique solution to f(x) = x + 3 sin(x) − 0.01 = 0 is
located near x = 0.

(a) Find a fixed point iteration that will converge for any x0 ∈ [−1
2
, 1
2
]. Show that

your method satisfies the assumptions of a relevant Theorem, but need not prove
the Theorem again. You can use the numerical values of sin(1

2
), cos(1

2
), exp(1

2
),

etc. in your proof.

(b) Find an N (need not be optimal) such that |xn − x∗| < 10−30 for all n ≥ N with
x0 = 0 (assuming a higher precision floating point arithmetic is used).

Ans:

2



(a) Direct fixed point iteration with x(k+1) = g
(k)
0 (x) = 0.01 − 3 sin(x(k)) does not

converge. Instead, a proper choice of α and g(x) = αx + (1− α)g0(x) will result
in local convergence (2 pts). One could choose

α =
g′0(ξ)

g′0(ξ)− 1

for some ξ near 0. Since ξ ≈ 0, g′0(ξ) ≈ −3, we take α = −3
−3−1 = 3

4
. (2 pts)

Since g(x) = 3
4
(x− sinx) + 0.0025, g′(x) = 3

4
(1− cos(x))

Therefore

0 <
3

4

(
1− cos(

1

2
)

)
≤ g′(x) ≤ 3

4
on [−1

2
,
1

2
].

It follows that g is an increasing function on [−1
2
, 1
2
],

−1

2
< −0.012931... = g(−1

2
) ≤ g(x) ≤ g(

1

2
) = 0.017931... <

1

2

(thus g([−1
2
, 1
2
]) ⊂ [−1

2
, 1
2
] (3 pts) ) and

|g′(x)| =
∣∣∣3
4

(1− cos(x))
∣∣∣ ≤ 3

4
= k < 1 ∀ x ∈ (−1

2
,
1

2
) (3 pts)

(b) Correct estimate (3 pts) and correct N (2 pts).
[Method 1]

|xn−x∗| ≤ kn max{x0−a, b−x0} =

(
3

4

)n

max

{
0−

(
−1

2

)
,

1

2
− 0

}
=

(
3

4

)n
1

2
< 10−30

⇒ n >
log10 2− 30

log10
3
4

= 237.71...⇒ N = 238.

[Method 2]

|xn − x∗| ≤
kn

1− k
|x1 − x0| = 4

(
3

4

)n

|g(0)− 0| =
(

3

4

)n

0.01 < 10−30

⇒ n >
28

log10
4
3

= 224.11...⇒ N = 225.

6. (15 pts) Give a (at least) cubically convergent method to solve for ex−1 = 0. Give the
formula and prove that it is at least cubically convergent (locally). If you cannot do
it, do the same for a locally (at least) quadratically convergent method for 1/3 partial
credit.

Answer:

[Cubic]
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One solution is given by (there may be others)

xn+1 = g(xn), g(x) = x− f(x)

f ′(x)
− f ′′(x)

2f ′(x)

[
f(x)

f ′(x)

]2
. (5 pts)

Check that g′(p) = g′′(p) = 0 and g′′′(p) 6= 0.

Therefore

pn+1 − p = g(pn)− g(p) =
g′′′(ξ)

3!
(pn − p)3

and

lim
n→∞

|pn+1 − p|
|pn − p|3

=
|g(3)(p)|

3!
. (10 pts)

[Quadratic]

xn+1 = g(xn), g(x) = x− f(x)

f ′(x)
. (2 pts)

Check that g′(p) = 0 and g′′(p) 6= 0.

Therefore

pn+1 − p = g(pn)− g(p) =
g′′(ξ)

2!
(pn − p)2

and

lim
n→∞

|pn+1 − p|
|pn − p|2

=
|g′′(p)|

2!
. (3 pts)

7. (15 pts) One way of computing π is given by the Wallis formula

π

2
=
∞∏
n=1

(
(2n)2

(2n− 1)(2n+ 1)

)
.

The N -term approximation is therefore given by

πN
2

=

(
2 · 2
1 · 3

)(
4 · 4
3 · 5

)(
6 · 6
5 · 7

)
· · ·
(

2N · 2N
(2N − 1) · (2N + 1)

)
To prevent overflow too quickly, it is better to evaluate the last multiplication as
∗(2N)/(2N − 1) ∗ (2N)/(2N + 1). Find the rate of convergence of limn→∞ πn = π
numerically. Extra points without using the limit π explicitly.

Hint: The convergence is slow, try not to produce all the data points. For example,
π100, π200, · · · , π10000 should be enough to analyze.

To check if an integer j is a multiple of 100 or not, you can use mod or check
round(j/100) ∗ 100.

Ans:

Programming:
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Completed program that can produce all πn needed: (10 pts)

Analysis:

Method 1:

Try semilogy and loglog plot of |πn − π| vs n to determine whether |πn − π| ≈ Cn−p

or |πn − π| ≈ Cα−n or something else.

The results indicates that |πn − π| ≈ Cn−p where −p is the slope in the loglog plot
and p ≈ 1. Comparing the loglog plot of |πn − π| vs n, with the loglog plot of n−1 vs
n confirms that p = 1 (5 pts).

Method 2 (extra 5 pts):

Proceed to find out the constants C, p or C, α.

Directly try πn − π ≈ Cn−p and find p through

p ≈ log2

aN − a2N
a2N − a4N

Different choices of N = 300, 500, · · · , 1000, 1500 all give consistent answer p ≈ 1.

Conclusion: πn − π = O(n−1)

8. (15 pts) Use any method to solve the nonlinear system of equations

sin(x) +
2y

1 + x
= 0.01, 5x+ sin(

6y

1 + y2
) = 0.02.

Write your answer in the format of ’format long e’.

Hint: the solution is near (0, 0) where sinx ≈ x, y
1+x
≈ y, etc. to leading order.

Ans:

Method 1:

Let

g1(x) =
1

5

(
0.02− sin

(
6y

1 + y2

))
g2(x) =

1

2
(0.01− sin(x))(1 + x)

and

G(x) = (g1(x), g2(x))T

Ḡ(x) = αx + (I − α)G(x)

where α is a 2 × 2 matrix and I is the identity matrix. From the Hint, we can take
x0 = (0, 0)T and

α = (DG(x0)− I)−1DG(x0).
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Method 2:

From the Hint, the linear approximation of the left hand side is (x + 2y, 5x + 6y), so
we can rewrite the equation as

x+ 2y = 0.01 + x+ 2y − sin(x)− 2y

1 + x
≡ h1(x, y),

5x+ 6y = 0.02 + 6y − sin(
6y

1 + y2
) ≡ h2(x, y).

This suggests the fixed point iteration:(
x(k+1)

y(k+1)

)
=

(
1 2
5 6

)−1(
h1(x

(k), y(k))
h2(x

(k), y(k))

)
Method 3: Newton’s Method.

(Correct algorithm of any convergent method = 10 pts)

If x0 = (0, 0)T, then the iteration gives

x∗ ≈ (−4.882452175e− 03, 7.404885005e− 03)T. (5 pts)
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