HW3

Textbook §2.2 #9.

¢ Refer to the solutions in the textbook to prove the existence and uniqueness of fixed point by Thm.2.3.
¢ Run the following code. Then the numerical result shows that the approximation solution is
3.626995622438735 with 0.010000 accuracy after 3 iterations.

%fixed point iteration
poO = pi; TOL = 10"(-2); NO = 100
g = @(x) pi + ©.5*sin(x/2

i=1
while (i <= No
p = g(po

if (abs(p-p@) < TOL
fprintf('The approximation solution is %.15f with %f accuracy .
after %d iterations.\n', p, TOL, i);
return
end
i+=1
pe = p
end
printf('The method failed after NO iterations, N@ = %d\n', NO
return

end

e For py = m, Cor.2.5 implies that

1 n
lpn — Pl < <Z) <00l =>n>41477..=>n>5

and
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Textbook §2.2 #14a.

e Letg(x) =2+ sinx. Then g € C[2, 3]. Note that

o x€[2,3]C[a2,z] > 0 <sinx <1 = g(2,3]) C[2,3].
o | )| =]cosx| <|cos3| <1, Vxe(2D23).

By Thm.2.4, for any po € [2, 3], the sequence p,, = g(p,_1) converges to the unique fixed point
p € [2,3].

e Forpy = 2.5, Cor.2.5 implies that
lpn — p| < k" max{py —a,b —po} = |cos3|" - 0.5 < 107
= n > 1075.747628... = n > 1076

and

po —pl < 20
" 1

——————I|p1 —pol <107
— | cos 3|

= n > 1371.990509... = n > 1372.

¢ Run the following code. Then the numerical result shows that the approximation solution is
2.554192102747867 with 0.000010 accuracy after 52 iterations.

%fixed point iteration
po = 2.5; TOL = 10"(-5); NO = 100
g = @(x) 2 + sin(x

i=1
while (i <= No
p = g(po

if (abs(p-p@) < TOL
fprintf('The approximation solution is %.15f with %f accuracy .
after %d iterations.\n', p, TOL, i);
return
end
i+=1
poe = p
end
printf('The method failed after NO iterations, N© = %d\n', NO©
return

end



Textbook §2.2 #20.

. . 1
e p= hmn—>oopn = llmn—»oog(pn—l) = 2]9 _Ap2 > p= A
i 1 3 . 1 . . 1
e Any closed subinterval [a, b] of (ﬂ, g) containing - suffices. i.e. 7= < a
prove the convergence, first note that g € Cla, b]. Then note that

o gisincreasing on [a, l] and decreasing on [i, b]. Furthermore,

= gla) > a
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1s the maximum.
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8(Z) =

Therefore, g([a, b]) C [a, b].
_ 1 1 1 1 _
o |g )| = 245 —x[ £2Amax{; —a,b— 1} <2A5- =1, Vx € (a,b).



HW #2.

Let g(x) = 2 + sinx and g(x) = ax + (1 — a)g(x). Consider
Pnr1 = &py) = ap, + (I- a)g(Pn)

P« = g(p*) =ap, + (I - a)g(p*)-

MVT
= Pn+l —DPsx = [a + (1 - a)gl(gn)](pn _p*) for some ‘fn betweenpn andp*-

To accelerate the convergence, we choose a such that

a+(l-a)gE)=0

(&)
=>a= —,g Sn .
3)—g(2 '2)+g' 3
Reasonable guesses for g’ (£,) include g’ (2.5), % , and %. Both of them work well in this

example.

For g/ (£,) = g (2.5), the approximation solution is 2.554196096669195 with 0.000010 accuracy after 3
iterations.

8(3)-g(2)

For g’ (&,) = 3= » the approximation solution is 2.554195880784590 with 0.000010 accuracy after 4
iterations.

Joe L £+ B) o o .
For g'(&,) = =~ the approximation solution is 2.554196074187307 with 0.000010 accuracy after 5

iterations.



%generalized fixed point iteration
po = 2.5; TOL = 10(-5); NO = 100;

k = cos(2.5);

al = k / (k-1);

g = @(x) al*x + (1-al)*(2 + sin(x));

i=1;
while (i <= N@)
p = 8(p0);

if (abs(p-p@) < TOL)

fprintf('The approximation solution is %.15f with %f accuracy ...

after %d iterations.\n', p, TOL, i);

return;
end
i+=1;
po = p;
end

printf('The method failed after NO iterations, NO© = %d\n', NO);
return;

end



Textbook §2.3 #13a.

For pg = —1, p; = 0, the numerical result shows that the approximation solution is -0.040658499043342
with 0.000001 accuracy after 17 iterations.

For pg = 0, p; = 1, the numerical result shows that the approximation solution is 0.962398384238757
with 0.000001 accuracy after 9 iterations.

%method of false point

po = -1; pl = @; TOL = 10"(-6); NO = 100

%p0 = 0; pl = 1; TOL = 10”~(-6); NO = 100;

f = @(x) 230*x"4 + 18 *x"*3 + 9*x"2 - 221*x - 9

i=2
qo = f(po
ql = f(pl

while (i <= N@
p=pl - ql*(pl-p@)/(ql-qe
if (abs(p-pl) < TOL
fprintf('The approximation solution is %.15f with %f accuracy ...
after %d iterations.\n', p, TOL, 1i);

return
end
i+=1
q = f(p
if (gq*ql < ©
pe = pl
qé = ql
end
pl = p
ql = q
end
printf('The method failed after NO iterations, N@ = %d\n', NO
return

end



Textbook §2.3 #13b.

For po = —1, p; = 0, the numerical result shows that the approximation solution is -0.040659288315725
with 0.000001 accuracy after 5 iterations.

For pg = 0, p; = 1, the numerical result shows that the approximation solution is -0.040659288315572
with 0.000001 accuracy after 12 iterations.

%secant method

po = -1; pl = 9; TOL = 10"(-6); NO = 100

%p0 = 0; pl = 1; TOL 107 (-6); NO = 100;

f = @(x) 230*x"4 + 18 *x"*3 + 9*x"2 - 221*x - 9

i=2
qo = f(pe
ql = f(pl

while (i <= N@
p=pl - ql*(pl-p@)/(ql-qe
if (abs(p-pl) < TOL
fprintf('The approximation solution is %.15f with %f accuracy ...
after %d iterations.\n', p, TOL, 1i);

return

end

i+=1

po = pl

go = q1l

pl = p

ql = f(p
end
printf('The method failed after NO© iterations, N@ = %d\n', NO©
return

end



Textbook §2.3 #17c.

Plot the graph of f for an observation.

Test some initial points for more observations.
For py = 0.5, the numerical result shows that the approximation solution is 0.450656747890593 with

0.000010 accuracy after 3 iterations.
For py = 1.5, the numerical result shows that the approximation solution is 1.744738053368350 with

0.000010 accuracy after 3 iterations.



%Newton's method
po = 0.5; TOL = 10°(-5); NO© = 100;
%p0 = 1.5; TOL = 10~(-5); NO = 100;
f = @(x) log(x"2+1) - exp(@.4*x) * cos(pi*x);
df = @(x) 2*x/(1+x"2) - exp(@.4*x) * (@.4*cos(pi*x)-pi*sin(pi*x));
i=1;
while (i <= NO)
p = po - f(po)/df(pe);
if (abs(p-p@) < TOL)
fprintf('The approximation solution is %.15f with %f accuracy ...
after %d iterations.\n', p, TOL, i);
return;
end
i+=1;
po = p;
end
printf('The method failed after NO iterations, NO@ = %d\n', NO);
return;

end

Finally, we conclude that n — % is a reasonable initial approximation to find the nth smallest positive zero.



Textbook §2.3 #18.

For py = /2, the numerical result shows that the approximation solution is 1.895488418971447 with
0.000010 accuracy after 15 iterations.

For py = S, the numerical result shows that the approximation solution is 1.895489001382098 with
0.000010 accuracy after 19 iterations.

For py = 107z, the numerical result shows that the method failed after N,y iterations, Ny = 100.

%Newton's method
po = pi/2; TOL = 10"(-5 NO = 100
%p0 = 5*pi; TOL = 10~(-5); NO = 100;

%p@ = 10*pi; TOL = 10~(-5); NO = 100;

f = @(x) 0.5 + 0.25*x"2 - x*sin(x) - ©.5*cos(2*x
df = @(x) ©.5*x - sin(x) - x*cos(x) + sin(2*x
i=1

while (i <= N@
p = po - f(po)/df(po
if (abs(p-p@) < TOL
fprintf('The approximation solution is %.15f with %f accuracy .
after %d iterations.\n', p, TOL, i);
return

end
printf('The method failed after NO iterations, N@ = %d\n', NO@
return

end

The results do not indicate the fast convergence usually associated with Newton’s method.



