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Outline

@ Fixed points for functions of several variables

© Newton's method

© Quasi-Newton methods

@ Steepest Descent Techniques
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Fixed points for functions of several variables

Theorem

Let f: D C R®™ — R be a function and xoy € D. If all the partial
derivatives of f exist and 3 0 > 0 and a > 0 such that V ||z — xo|| <
and x € D, we have

‘3f (z)
333']'

<a,Vji=12...,n,

then f is continuous at x.

Definition (Fixed Point)

A function G from D C R" into R" has a fixed point at p € D if
G(p) =p.
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Theorem (Contraction Mapping Theorem)

Let D = {(x1, - ,2p) 5a0; <2 <b;,Vi=1,...,n} CR" Suppose

G : D — R" is a continuous function with G(x) € D whenever x € D.
Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant
a < 1 exists with

<

8 .
‘ 9:(x) , whenever x € D,

8.%'j

(0%
n

forj=1,....,nandi=1,...,n. Then, forany:c(o) eD,
2® = Gz*V),  foreach k>1

converges to the unique fixed point p € D and

5% = p oo 75— 1| 2® =2 o

1l —«o
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Example

Consider the nonlinear system

3x1 — cos(woxs) — 5 = 0,

22— 81(zo +0.1)2 +sinazs +1.06 = 0,
10m — 3

e™T1%2 4 90y + — =0

3

@ Fixed-point problem:
Change the system into the fixed-point problem:

1 1
x] = gcos(acga:g) + 6 = g1(x1, 2, x3),
1
Ty = 5\/35% +sinzg + 1.06 — 0.1 = ga(x1, z2, T3),
1 10m — 3
r3 = _2_()6_9“%2 B 20 = g3(x1, T2, T3)-

Let G : R? — R? be defined by G(z) = [g1(%), g2(z), g3(x)] .
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@ G has a unique point in D = [-1,1] x [-1,1] x [-1,1]:
» Existence: V z € D,

1 1
lg1(x)| < §| cos(zaz3)| + 6 <0.5,

1 1
lg2(z)| = ‘5\/x;f +sinxz + 1.06 — 0.1) < 5\/1 +sinl+1.06 — 0.1 < 0.09.
1 10m — 3 1 10m — 3
= —enm2 < 61
lgs(z)| 50° I 0= 2Oe+ 60 < 0.61,
it implies that G(z) € D whenever x € D.
» Uniqueness:
991 992 993
a0, |22 =0 and |2 | =0
6$1 ‘81'2 an 83:3 ’
as well as
1 1
g—z: < §|x3| - | sin(zoxs)| < 3 sin1 < 0.281,
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0 1 1
—ai; < §|:c2| - | sin(zex3)| < 3 sin1 < 0.281,
0 1
92 = 24l < < 0.238,
dx1 9y/x? +sinzs +1.06  9v0.218
dg2 | cos 3] 1
=2 = < < 0.119,
Ox3 18y/2% + sinzs +1.06  18/0.218
9gs3 |.Z'2‘ —T172 1
— = —= < — 0.14
D1 20¢ St
893 |l‘1‘ —x1To 1
e E—— < — 0.14.
D2 20¢ “20°°
These imply that g1, go and g3 are continuous on D and V = € D,
8 .
99i | < 0.281, V¥ i, j.
8.’11]'

Similarly, dg;/0x; are continuous on D for all i and j. Consequently, G
has a unique fixed point in D.
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@ Approximated solution:
> Fixed-point iteration (1):
Choosing z(®) = [0.1,0.1, —0.1]7, the sequence {z(F)} is generated by

1 _ _ 1
xgk) = gcosxgk l)xgk 1)+6’
by _ L[ e-DY G =D L 06— 0
Ty = 9 T + sin xg + 1.06 — 0.1,
1 “y, -y 10w —
ng) I e Y O —3
20 60
> Result:

3 2 3 -
ko) 23 230 [o® —a® V|
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.00944115 -0.52310127 0.423
2 0.49999593 0.00002557 -0.52336331 9.4 x 1073
3 0.50000000 0.00001234 -0.52359814 2.3x 1074
4 0.50000000 0.00000003 -0.52359847 1.2 x 107°
5 0.50000000 0.00000002 -0.52359877 3.1x 1077
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@ Approximated solution (cont.):
> Accelerate convergence of the fixed-point iteration:

k 1 k—1) (k—1) , 1
xg ) = gcosxg )xé )+6’
Q) 1 \2 | . (k=1)
#) = ¢ (;z,-l ) +sinz Y +1.06 — 0.1,
RO 1 e 10w —3
5720 60
as in the Gauss-Seidel method for linear systems.
> Result:
Eat) ) 27 [o® — 2@ D]l
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.02222979 -0.52304613 0.423
2 0.49997747 0.00002815 -0.52359807 2.2 x 1072
3 0.50000000 0.00000004 -0.52359877 2.8 x 107°
4 0.50000000 0.00000000 -0.52359877 3.8 x 1078
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Newton's method
First consider solving the following system of nonlinear equations:

fi(z1,72) =0,
fa(z1,22) = 0.
&) (k)y - L :
Suppose (7, x5 ') is an approximation to the solution of the system
above, and we try to compute hgk) and hék) such that

(k) + pk ), (k) + h)Y satisfies the system. By the Taylor's theorem for
1 2
two variables,
0=f1(§ (k) ()+h())
)0 0
~ e, 2+ hP I (@ o) U0 o)
0x1 O0xa
0 — fg(x( (’f) ()+h§))
k) O 0
s falal,al) + P IT2 o0, o) 4 ) T2 (), )
o0x1 O0xa
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Put this in matrix form

k k k k
o (i, 2) 3—£;<x§k>,w§k>>] [hij J [ A, <:>>]N[o]
e a?) G ) [ || pe e | Lo

The matrix

Ja® oy = | e a) G, a)
Ty 5Ty 32 (,.(F) (k)) %(xgk) xék:))

02
is called the Jacobian matrix. Set hgk) and hgk) be the solution of the
linear system

oo [ a® B L®
Tt Vot [ i ] = [ ;lﬁx(lk)’m(?k); ] :

w§k+1) _ :L'gk) N hgk)
w(2k+1) JJ(Qk) h(2k)

is expected to be a better approximation.
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In general, we solve the system of n nonlinear equations
filx,-o+ ,x,) =0,i=1,...,n. Let
T

and
F@)=[ filz) fole) - falx) ] .

The problem can be formulated as solving

F(z)=0, F:R"—>R"

Let J(x), where the (i, 7) entry is gg; (), be the n x n Jacobian matrix.
Then the Newton's iteration is defined as

2D (k) 4 )

where h() € R™ is the solution of the linear system
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Algorithm (Newton's Method for Systems)

Given a function F : R” — R™, an initial guess () to the zero of F', and
stop criteria M, 9, and ¢, this algorithm performs the Newton's iteration
to approximate one root of F.

Set k=0 and h(=1 = ¢;.

While (k < M) and (|| R*=D ||> §) and (|| F(z®)) ||> €)
Calculate J(z(®) = [0F;(x®))/0x;].
Solve the n x 7 linear system J(z(F)h*) = — F(z(®),
Set 2D = z®) + p(®) and k =k + 1.

End while

Output (“Convergent z(¥)") or
(“Maximum number of iterations exceeded")
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Theorem
Let x* be a solution of G(x) = x. Suppose 3 § > 0 with

(i) 0gi/0xj is continuous on N5 = {x; ||x — «*|| < 0} for all i and j.

(i) 02gi(z)/(8z;0zy) is continuous and

0%g;(x)
O0x;0xy,

<M

for some M whenever x € Ny for each i, j and k.
(iii) Ogi(z*)/0x, = 0 for each i and k.
Then 3 6 < & such that the sequence {x¥)} generated by

converges quadratically to x* for any z© satisfying ||2(®) — 2*||oc < 6.

Moreover,

l2®) — 2 HOOS—H U — 2%,V k> 1.
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Example
Consider the nonlinear system
1
3x1 — cos(woxs) — 3 = 0,
x3 —81(x2 +0.1)% +-sinxz +1.06 = 0,
107 —
™12 4 200 + 0”3 5 _

@ Nonlinear functions: Let

F(l’l,l’Q,xg) = [fl(ﬂfl,l'g,xg),f2(l’1,1ﬁ2,$3),f3(l‘1,l’2,.’f3)]T,

where
1
fi(w1,22,23) = 3x1 — cos(zaxs) — 5
fo(z1,29,23) = 22 —81(29+0.1) + sinz3 + 1.06,
10 — 3
fa(x1,2,23) = € "2+ 203 + T
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@ Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

3 T3 sin rox3 To Sin x9x3
J(x1,x9,23) = 211 —162(z2 +0.1) COS T3
—xoe” T2 —r1e 112 20
o Newton's iteration with initial (%) =[0.1,0.1, —0.1]""
% ék‘ii e
o T % || e |
3 h3
where
(k—1)
e (k=1) _(=1)  (k=1\\ T8 g (h=1)  (b=1)  (k-1)
hg = <J(331 » Lo » L3 )) F(zy ) T3 )
plE=1)
3

Fall 2020 16 / 33



@ Result:

ko) zy) ) o™ -2tV
0 0.10000000 0.10000000 -0.10000000

1 0.50003702 0.01946686 -0.52152047 0.422

2 0.50004593 0.00158859 -0.52355711 1.79 x 102

3 0.50000034 0.00001244 -0.52359845 1.58 x 1073

4 0.50000000 0.00000000 -0.52359877 1.24 x 107°

5 0.50000000 0.00000000 -0.52359877 0
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Quasi-Newton methods

@ Newton's Methods

» Advantage: quadratic convergence
» Disadvantage: For each iteration, it requires O(n?) + O(n?) + O(n)
arithmetic operations:
* n? partial derivatives for Jacobian matrix — in most situations, the
exact evaluation of the partial derivatives is inconvenient.
* n scalar functional evaluations of F’
* O(n®) arithmetic operations to solve linear system.
@ quasi-Newton methods

» Advantage: it requires only n scalar functional evaluations per iteration
and O(n?) arithmetic operations
» Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model
Up(z) = fag) + ap(x — xg)

to approximate the function f(z) at xx. Thatis, (x(xr) = f(x) for any
ar € R. If we further require that ¢'(z}) = f'(x1), then a = f'(ay).
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The zero of ¢ (x) is used to give a new approximate for the zero of f(z),
that is,

T+l = Tk — %f(xk)

which yields Newton's method.
If f'(x1) is not available, one instead asks the linear model to satisfy

fk(xk) = f((l,‘k) and gk(l’k—l) = f(:L’k_l).
In doing this, the identity
f@r_1) = le(2p—1) = flzx) + ap(Tr—1 — k)

gives

_ fla) = flen)

Lk — Thk—1
Solving ¢ (z) = 0 yields the secant iteration

T — Tk—1

f(xr) = f(xp-1)
FaTIT 157 5

f (@)

Th+1l = Tk —



In multiple dimension, the analogue affine model becomes
My (z) = F(xg) + Ak(x — zg),
where z, z;, € R™ and Ay € R™ ", and satisfies
My(xr) = F(zr),

for any Ag. The zero of My(x) is then used to give a new approximate for
the zero of F(x), that is,

Tpt1 = Tk — A;lF(xk).
The Newton's method chooses
A = F'(x),) = J(x1) = the Jacobian matrix
and yields the iteration
The1 = 2 — (F'(ar) " Flag).
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When the Jacobian matrix J(zx) = F’(xy) is not available, one can
require

My (1) = F(@g-1).

Then
F(zg-1) = Mi(zg-1) = F(zg) + Ap(@p-1 — 7)),

which gives
Az — xp—1) = F(z) — F(2—1)
and this is the so-called secant equation. Let
hy =2 — 21 and  yp = F(xy) — F(op_1).
The secant equation becomes

Aghi = Y.

Wei-Cheng Wang (NTHU) Num. sol. of nonlinear systems Fall 2020 21 /33



However, this secant equation can not uniquely determine Ag. One way of
choosing A}, is to minimize Mj, — Mj,_1 subject to the secant equation.
Note

My (z) — M—1(z) = F(zg)+ Ax(z — ) — F(zp—1) — Ak—1(z — z—1)
(F(zg) — F(z—1)) + Ax(z — ) — Ap—1(x — 1
Ag(xp — xp—1) + Ak(x — x) — Ag—1(x — T—1)
Ap(z — 2p-1) — Ap—1(T — Tp—1)

= (Ap— Ap_1)(@ — TK—1)-

For any x € R", we express
T — Tp_1 = ahy + tg,
for some a € R, ¢, € R™, and hftk = 0. Then

My, — M_1 = (Ak—Ak_l)(ahk +tk) =] Oz(Ak—Ak_l)hk-F(Ak—Ak_l)tk.
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Since
(Ar — Ag—1)hy = Aghy — Ap—1h, =y — Ap—1hg,

both gy, and Ai_1hy are old values, we have no control over the first part
(Ag — Ak—1)hg. In order to minimize My (x) — My_1(x), we try to choose
Aj, so that

(A — Ap—1)txy =0

for all ¢, € R™, h{tk = 0. This requires that Ay — Aj;_1 to be a rank-one
matrix of the form

Ay — Ap_1 = uphi
for some ug € R™. Then

ughi hy = (A — Ag—1)hy = yr — Ap—_1hs,
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which gives

_ Yk~ Ap_1hg

Uf
hghk

Therefore,

(yx — Ag—1hg)hE

Ap = A1 +
k k—1 W,

After Ay is determined, the new iterate z is derived from solving
Mj(xz) = 0. It can be done by first noting that

hit1 = Thp1 — T = Tpp1 = Tk + i
and
My(zp41) =0 = F(zg) + Ap(zpt —2x) =0 = Aphy = —F(zy)

These formulations give the Broyden's method.
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Algorithm (Broyden's Method)

Given a n-variable nonlinear function F' : R™ — R", an initial iterate zg
and initial Jacobian matrix Ay € R™*™ (e.g., Ao = I), this algorithm finds
the solution for F'(z) = 0.

Given x, tolerance TOL, maximum number of iteration M.
Set k =1.
While £ < M and ||zx — zx_1||2 > TOL

Solve Akthrl = —F(.’L‘k) for hk+1

Update zp+1 = z + hgt1

Compute yi1 = F'(2g41) — F(2)

Update
— Arh e + F hr
A = Ap+ (Yr+1 k khet1) Py _ (Y41 - (@) i
hk+1hk+1 hk+1hk+1
k=k+1
End While

v
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Solve the linear system Aphii1 = —F(xy) for hgiq:
@ LU-factorization: cost %n?’ + O(n?) floating-point operations.

@ Applying the Shermann-Morrison-Woodbury formula
(B+UVT) ' =B ' - B U (1+VTB'U) ' VTB!
to (1), we have
At

= |Ap1+

(yk — Ak_lhwh;—:]*
hi by,

-1
1 1 Yk — Ap—1hg T -1 Yk — Ax—1hg T A
= A — Ak—l—hThk (1 + hy Ap_1— TWThe hj, Ay
i k
o, (= AT R AL
- Ak—l + hTA—l :
kA—1Yk
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Steepest Descent Techniques

@ Newton-based methods
» Advantage: high speed of convergence once a sufficiently accurate
approximation
» Weakness: an accurate initial approximation to the solution is needed
to ensure convergence.

@ The Steepest Descent method converges only linearly to the solution,
but it will usually converge even for poor initial approximations.

e “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + " Compute convergent solution by using
Newton-based methods”

@ The method of Steepest Descent determines a local minimum for a
multivariable function of g : R™ — R.

@ A system of the form f;(x1,...,2,) =0, i=1,2,...,n has a
solution at x iff the function g defined by

n
g(@1, ... mn) = Y [filzr, ... z0)]°
i=1
has the minimal value zero.
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Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation z(%;
(i) Determine a direction from z(9) that results in a decrease in the value
of g;
(iii) Move an appropriate distance in this direction and call the new vector
M-

(iv) Repeat steps (i) through (iii) with (%) replaced by 2.

0)

Definition (Gradient)
If g : R™ — R, the gradient, Vg(x), at z is defined by
_ (99 9g
Vo) = (@) @),

Definition (Directional Derivative)

The directional derivative of g at x in the direction of v with || v [|a=1 is
defined by

v
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Theorem
The direction of the greatest decrease in the value of g at x is the
direction given by —Vg(x).

@ Object: reduce g(z) to its minimal value zero.
= for an initial approximation z(?), an appropriate choice for new
vector z(1) is

2 =20 — avg(z®),  for some constant « > 0.
@ Choose a > 0 such that g(z() < g(z(©): define
h(a) = g(@® — avg(z)),
then find o* such that

h(a®) = min h(a).

«
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@ How to find o*7?

» Solve a root-finding problem h/(a) =0 = Too costly, in general.
> Choose three number oy < ay < a3, construct quadratic polynomial
P(z) that interpolates h at oy, as and ag, i.e.,

P(a1) = h(ar), P(az) = h(az), P(as) = h(as),

to approximate h. Use the minimum value P(&) in [aq, as] to
approximate h(a*). The new iteration is

20 = 20 _ 4vg(z).

* Set a3 = 0 to minimize the computation
* g is found with h(as) < h(aq).
* Choose a2 = a3/2.
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Example

Use the Steepest Descent method with z(©) =
reasonable starting approximation to the solution of the nonlinear system

fi(z1, z2, 23)

fa(x1, 22, 23)

f3(.il?1, x9, :123) = e 72 4 20x3 +

3x1 — cos(woxs) — =

2?2 — 81(zy +0.1)2 +sinxz + 1.06 = 0,

(0,0,0)7 to find a

1—0
2_7

107 —3
T2 .

Let g(z1, 22, z3) = [f1(z1, 22, 23)]* +

Then

[fo(21, 22, 23)]% +

[f3(z1, 22, 23)]2.

Vg(z1,22,33) = Vg(z)
— (26@32 @ + 2002 @) + 2 52 ),
21(0) 5Lk (0) + 22(0) 522 (@) + 2fal0) 52 (),
211(2) 50 (o) + 2ala) g1 () + 2a(0) 322 )
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For (9 = [0,0,0]”, we have

g(z®) =111.975 and 2z = |[Vg(z@)||> = 419.554.
Let

z= Ziovg(x@)) = [—0.0214514, —0.0193062, 0.999583] T .
With oy = 0, we have

g1 =gz — ay2) = g(=) = 111.975.
Let @3 = 1 so that
g3 = g(:c(o) — asz) = 93.5649 < ¢;.

Set ag = a3/2 = 0.5. Thus

g2 = g(z @ — anz) = 2.53557.
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Form quadratic polynomial P(«) defined as
P(a) = g1 + hia + hsa(a — as)

that interpolates g(z(®) — az) at a1 = 0, a3 = 0.5 and a3 = 1 as follows

g2 = Plas) = g1 +has = hy = 92; 9L _ 918878,
2

93 = P(as) = g1 + hias + hsas(as — az) = hs = 400.937.
Thus
P(a) = 111.975 — 218.878a + 400.937a(cx — 0.5)

so that

0= P'(ap) = —419.346 + 801.87209 = g = 0.522959
Since

go = g(z9 — agz) = 2.32762 < min{gy, g3},

we set

M = 20 — o5z = [0.0112182,0.0100964, —0.522741]" .
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