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Definition

‖ · ‖ : Rn → R is a vector norm if

(i) ‖x‖ ≥ 0, ∀ x ∈ Rn,

(ii) ‖x‖ = 0 if and only if x = 0,

(iii) ‖αx| = |α|‖x‖ ∀ α ∈ R and x ∈ Rn,

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ Rn.

Definition

The `2 and `∞ norms for x = [x1, x2, · · · , xn]T are defined by

‖x‖2 = (xTx)1/2 =

{
n∑
i=1

x2
i

}1/2

and ‖x‖∞ = max
1≤i≤n

|xi|.

The `2 norm is also called the Euclidean norm.
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Theorem (Cauchy-Bunyakovsky-Schwarz inequality)

For each x = [x1, x2, · · · , xn]T and y = [y1, y2, · · · , yn]T in Rn,

xT y =
n∑
i=1

xiyi ≤

{
n∑
i=1

x2
i

}1/2{ n∑
i=1

y2
i

}1/2

= ‖x‖2 · ‖y‖2.

Proof: If x = 0 or y = 0, the result is immediate.
Suppose x 6= 0 or y 6= 0. For each α ∈ R,

0 ≤ ‖x− αy‖22 =
n∑
i=1

(xi − αyi)2 =
n∑
i=1

x2
i − 2α

n∑
i=1

xiyi + α2
n∑
i=1

y2
i ,

and

2α
n∑
i=1

xiyi ≤
n∑
i=1

x2
i + α2

n∑
i=1

y2
i = ‖x‖22 + α2‖y‖22.
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Since ‖x‖2 > 0 and ‖y‖2 > 0, we can let

α =
‖x‖2
‖y‖2

to give (
2
‖x‖2
‖y‖2

)( n∑
i=1

xiyi

)
≤ ‖x‖22 +

‖x‖22
‖y‖22

‖y‖22 = 2‖x‖22.

Thus

xT y =
n∑
i=1

xiyi ≤ ‖x‖2‖y‖2.
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For each x, y ∈ Rn,

‖x+ y‖∞ = max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n

(|xi|+ |yi|)

≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi| = ‖x‖∞ + ‖y‖∞

and

‖x+ y‖22 =
n∑
i=1

(xi + yi)2 =
2∑
i=1

x2
i + 2

n∑
i=1

xiyi +
n∑
i=1

y2
i

≤ ‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22 = (‖x‖2 + ‖y‖2)2,

which gives

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2.

Definition

A sequence {x(k) ∈ Rn}∞k=1 is convergent to x with respect to the norm
‖ · ‖ if ∀ ε > 0, ∃ an integer N(ε) such that

‖x(k) − x‖ < ε, ∀ k ≥ N(ε).
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Theorem

{x(k) ∈ Rn}∞k=1 converges to x with respect to ‖ · ‖∞ if and only if

lim
k→∞

x
(k)
i = xi, ∀ i = 1, 2, . . . , n.

Proof: “⇒” Given any ε > 0, ∃ an integer N(ε) such that

max
1≤i≤n

|x(k)
i − xi| = ‖x

(k) − x‖∞ < ε, ∀ k ≥ N(ε).

This result implies that

|x(k)
i − xi| < ε, ∀ i = 1, 2, . . . , n.

Hence

lim
k→∞

x
(k)
i = xi, ∀ i.
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“⇐” For a given ε > 0, let Ni(ε) represent an integer with

|x(k)
i − xi| < ε, whenever k ≥ Ni(ε).

Define

N(ε) = max
1≤i≤n

Ni(ε).

If k ≥ N(ε), then

max
1≤i≤n

|x(k)
i − xi| = ‖x

(k) − x‖∞ < ε.

This implies that {x(k)} converges to x with respect to ‖ · ‖∞.
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Theorem

For each x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞.

Proof: Let xj be a coordinate of x such that

‖x‖2∞ = |xj |2 ≤
n∑
i=1

x2
i = ‖x‖22,

so ‖x‖∞ ≤ ‖x‖2 and

‖x‖22 =
n∑
i=1

x2
i ≤

n∑
i=1

x2
j = nx2

j = n‖x‖2∞,

so ‖x‖2 ≤
√
n‖x‖∞.
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Definition

A matrix norm ‖ · ‖ on the set of all n× n matrices is a real-valued
function satisfying for all n× n matrices A and B and all real number α:

(i) ‖A‖ ≥ 0;

(ii) ‖A‖ = 0 if and only if A = 0;

(iii) ‖αA‖ = |α|‖A‖;
(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖;
(v) ‖AB‖ ≤ ‖A‖‖B‖;

Theorem

If ‖ · ‖ is a vector norm on Rn, then

‖A‖ = max
‖x‖=1

‖Ax‖

is a matrix norm.
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For any z 6= 0, we have x = z/‖z‖ as a unit vector. Hence

‖A‖ = max
‖x‖=1

‖Ax‖ = max
z 6=0

∥∥∥∥A( z

‖z‖

)∥∥∥∥ = max
z 6=0

‖Az‖
‖z‖

.

Corollary

‖Az‖ ≤ ‖A‖ · ‖z‖.

Theorem

If A = [aij ] is an n× n matrix, then

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.
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Proof:
Let x be an n-dimension vector with

1 = ‖x‖∞ = max
1≤i≤n

|xi|.

Then

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣
≤ max

1≤i≤n

n∑
j=1

|aij | max
1≤j≤n

|xj | = max
1≤i≤n

n∑
j=1

|aij |.

Consequently,

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≤ max
1≤i≤n

n∑
j=1

|aij |.

On the other hand, let p be an integer with
n∑
j=1

|apj | = max
1≤i≤n

n∑
j=1

|aij |,
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and x be the vector with

xj =
{

1, if apj ≥ 0,
−1, if apj < 0.

Then

‖x‖∞ = 1 and apjxj = |apj |, ∀ j = 1, 2, . . . , n,

so

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
n∑
j=1

apjxj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

|apj |

∣∣∣∣∣∣ = max
1≤i≤n

n∑
j=1

|aij |.

This result implies that

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≥ max
1≤i≤n

n∑
j=1

|aij |.

which gives

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.
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Eigenvalues and eigenvectors

Definition (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI).

Definition (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues of the matrix A. If λ is an eigenvalue of A and x 6= 0 satisfies
(A− λI)x = 0, then x is an eigenvector of A corresponding to the
eigenvalue λ.

Definition (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The
spectral radius of A is

ρ(A) = max{|λ|;λ is an eigenvalue ofA}.
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Theorem

If A is an n× n matrix, then

(i) ‖A‖2 =
√
ρ(ATA);

(ii) ρ(A) ≤ ‖A‖ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and
x 6= 0 is a corresponding eigenvector such that Ax = λx and ‖x‖ = 1.
Then

|λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,

that is, |λ| ≤ ‖A‖. Since λ is arbitrary, this implies that
ρ(A) = max |λ| ≤ ‖A‖.

Theorem

For any A and any ε > 0, there exists a matrix norm ‖ · ‖ such that

ρ(A) < ‖A‖ < ρ(A) + ε.

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra Fall 2020 15 / 87



Definition

We call an n× n matrix A convergent if

lim
k→∞

(Ak)ij = 0 ∀ i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem

The following statements are equivalent.

1 A is a convergent matrix;

2 lim
k→∞

‖Ak‖ = 0 for some matrix norm;

3 lim
k→∞

‖Ak‖ = 0 for all matrix norm;

4 ρ(A) < 1;

5 lim
k→∞

Akx = 0 for any x.
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Iterative techniques for solving linear systems

For small dimension of linear systems, it requires for direct techniques.

For large systems, iterative techniques are efficient in terms of both
computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A
into

A = M − (M −A),

for some matrix M , which is called the splitting matrix. Here we assume
that A and M are both nonsingular. Then the original problem is
rewritten in the equivalent form

Mx = (M −A)x+ b.

This suggests an iterative process

x(k) = (I −M−1A)x(k−1) +M−1b ≡ Tx(k−1) + c,

where T is usually called the iteration matrix. The initial vector x(0) can
be arbitrary or be chosen according to certain conditions.
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Two criteria for choosing the splitting matrix M are

x(k) is easily computed. More precisely, the system Mx(k) = y is easy
to solve;

the sequence {x(k)} converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that
M−1 approximate A−1,
In the following subsections, we will introduce some of the mostly
commonly used classic iterative methods.
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Jacobi Method

If we decompose the coefficient matrix A as

A = D − L− U,

where D is the diagonal part, L is the strictly lower triangular part, and U
is the strictly upper triangular part, of A, and choose M = D, then we
derive the iterative formulation for Jacobi method:

x(k) = D−1(L+ U)x(k−1) +D−1b.

With this method, the iteration matrix TJ = D−1(L+ U) and c = D−1b.

Each component x
(k)
i can be computed by

x
(k)
i =

bi − i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

/aii.
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a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k−1)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

...

an1x
(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · ·+ annx

(k)
n = bn.

Algorithm (Jacobi Method)

Given x(0), tolerance TOL, maximum number of iteration M .
Set k = 1.

While k ≤M and ‖x− x(0)‖2 ≥ TOL
Set k = k + 1, x(0) = x.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijx

(0)
j −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For
End While
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Example

Consider the linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,
E2 : −x1 + 11x2 − x3 + 3x4 = 25,
E3 : 2x1 − x2 + 10x3 − x4 = −11,
E4 : 3x2 − x3 + 8x4 = 15

which has the unique solution x = [1, 2,−1, 1]T .

Solving equation Ei for xi, for i = 1, 2, 3, 4, we obtain

x1 = 1/10x2 − 1/5x3 + 3/5,
x2 = 1/11x1 + 1/11x3 − 3/11x4 + 25/11,
x3 = −1/5x1 + 1/10x2 + 1/10x4 − 11/10,
x4 = − 3/8x2 + 1/8x3 + 15/8.
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Then Ax = b can be rewritten in the form x = Tx+ c with

T =


0 1/10 −1/5 0

1/11 0 1/11 −3/11
−1/5 1/10 0 1/10

0 −3/8 1/8 0

 and c =


3/5

25/11
−11/10

15/8


and the iterative formulation for Jacobi method is

x(k) = Tx(k−1) + c for k = 1, 2, . . . .

The numerical results of such iteration is list as follows:
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k x1 x2 x3 x4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.2727 -1.1000 1.8750
2 1.0473 1.7159 -0.8052 0.8852
3 0.9326 2.0533 -1.0493 1.1309
4 1.0152 1.9537 -0.9681 0.9738
5 0.9890 2.0114 -1.0103 1.0214
6 1.0032 1.9922 -0.9945 0.9944
7 0.9981 2.0023 -1.0020 1.0036
8 1.0006 1.9987 -0.9990 0.9989
9 0.9997 2.0004 -1.0004 1.0006

10 1.0001 1.9998 -0.9998 0.9998
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; c(2,1) = 25/11; c(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + c; k = 0;
fprintf(’ k x1 x2 x3 x4 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; xnew = T * xold + c; k = k + 1;
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
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Gauss-Seidel Method

When computing x
(k)
i for i > 1, x

(k)
1 , . . . , x

(k)
i−1 have already been

computed and are likely to be better approximations to the exact

x1, . . . , xi−1 than x
(k−1)
1 , . . . , x

(k−1)
i−1 . It seems reasonable to compute x

(k)
i

using these most recently computed values. That is

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

a31x
(k)
1 + a32x

(k)
2 + a33x

(k)
3 + · · ·+ a3nx

(k−1)
n = b3

...

an1x
(k)
1 + an2x

(k)
2 + an3x

(k)
3 + · · ·+ annx

(k)
n = bn.

This improvement induce the Gauss-Seidel method.
The Gauss-Seidel method sets M = D − L and defines the iteration as

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b.
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That is, Gauss-Seidel method uses TG = (D − L)−1U as the iteration
matrix. The formulation above can be rewritten as

x(k) = D−1
(
Lx(k) + Ux(k−1) + b

)
.

Hence each component x
(k)
i can be computed by

x
(k)
i =

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

/aii.

For Jacobi method, only the components of x(k−1) are used to

compute x(k). Hence x
(k)
i , i = 1, . . . , n, can be computed in parallel

at each iteration k.

At each iteration of Gauss-Seidel method, since x
(k)
i can not be

computed until x
(k)
1 , . . . , x

(k)
i−1 are available, the method is not a

parallel algorithm in nature.
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Algorithm (Gauss-Seidel Method)

Given x(0), tolerance TOL, maximum number of iteration M .
Set k = 1.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijxj −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For

While k ≤M and ‖x− x(0)‖2 ≥ TOL
Set k = k + 1, x(0) = x.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijxj −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For
End While
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Example

Consider the linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,
E2 : −x1 + 11x2 − x3 + 3x4 = 25,
E3 : 2x1 − x2 + 10x3 − x4 = −11,
E4 : 3x2 − x3 + 8x4 = 15

which has the unique solution x = [1, 2,−1, 1]T .

Gauss-Seidel method gives the equation

x
(k)
1 = 1

10x
(k−1)
2 − 1

5x
(k−1)
3 + 3

5 ,

x
(k)
2 = 1

11x
(k)
1 + 1

11x
(k−1)
3 − 3

11x
(k−1)
4 + 25

11 ,

x
(k)
3 = −1

5x
(k)
1 + 1

10x
(k)
2 + 1

10x
(k−1)
4 − 11

10 ,

x
(k)
4 = − 3

8x
(k)
2 + 1

8x
(k)
3 + 15

8 .
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The numerical results of such iteration is list as follows:

k x1 x2 x3 x4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.3273 -0.9873 0.8789
2 1.0302 2.0369 -1.0145 0.9843
3 1.0066 2.0036 -1.0025 0.9984
4 1.0009 2.0003 -1.0003 0.9998
5 1.0001 2.0000 -1.0000 1.0000

The results of Example appear to imply that the Gauss-Seidel method
is superior to the Jacobi method.

This is almost always true, but there are linear systems for which the
Jacobi method converges and the Gauss-Seidel method does not.

See Exercises 9 and 10 of Section 7.3.
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Matlab code of Example
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;
for ii = 1:n

xnew(ii) = b(ii);
for jj = 1:ii-1

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n

xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
k = 0; fprintf(’ k x1 x2 x3 x4 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; k = k + 1;
for ii = 1:n

xnew(ii) = b(ii);
for jj = 1:ii-1

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n

xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
diary off
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Lemma (20)

If ρ(T ) < 1, then (I − T )−1 exists and

(I − T )−1 =
∞∑
i=0

T i = I + T + T 2 + · · · .

Proof: Let λ be an eigenvalue of T , then 1− λ is an eigenvalue of I − T .
But |λ| ≤ ρ(A) < 1, so 1− λ 6= 0 and 0 is not an eigenvalue of I − T ,
which means (I − T ) is nonsingular.
Next we show that (I − T )−1 = I + T + T 2 + · · · . Since

(I − T )

(
m∑
i=0

T i

)
= I − Tm+1,

and ρ(T ) < 1 implies ‖Tm‖ → 0 as m→∞, we have

(I − T )

(
lim
m→∞

m∑
i=0

T i

)
= (I − T )

( ∞∑
i=0

T i

)
= I.
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Theorem

For any x(0) ∈ Rn , the sequence produced by

x(k) = Tx(k−1) + c, k = 1, 2, . . . ,

converges to the unique solution of x = Tx+ c if and only if

ρ(T ) < 1.

Proof: Suppose ρ(T ) < 1. The sequence of vectors x(k) produced by the
iterative formulation are

x(1) = Tx(0) + c

x(2) = Tx(1) + c = T 2x(0) + (T + I)c
x(3) = Tx(2) + c = T 3x(0) + (T 2 + T + I)c

...

In general

x(k) = T kx(0) + (T k−1 + T k−2 + · · ·T + I)c.
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Since ρ(T ) < 1, limk→∞ T
kx(0) = 0 for any x(0) ∈ Rn. By Lemma 20,

(T k−1 + T k−2 + · · ·T + I)c→ (I − T )−1c, as k →∞.

Therefore

lim
k→∞

x(k) = lim
k→∞

T kx(0) +

 ∞∑
j=0

T j

 c = (I − T )−1c.

Conversely, suppose {x(k)} → x = (I − T )−1c. Since

x− x(k) = Tx+ c− Tx(k−1) − c = T (x− x(k−1)) = T 2(x− x(k−2))
= · · · = T k(x− x(0)).

Let z = x− x(0). Then

lim
k→∞

T kz = lim
k→∞

(x− x(k)) = 0.

It follows from theorem ρ(T ) < 1.
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Theorem

If ‖T‖ < 1, then the sequence x(k) converges to x for any initial x(0) and

1 ‖x− x(k)‖ ≤ ‖T‖k‖x− x(0)‖
2 ‖x− x(k)‖ ≤ ‖T‖k

1−‖T‖‖x
(1) − x(0)‖.

Proof: Since x = Tx+ c and x(k) = Tx(k−1) + c,

x− x(k) = Tx+ c− Tx(k−1) − c
= T (x− x(k−1))
= T 2(x− x(k−2)) = · · · · · · = T k(x− x(0)).

The first statement can then be derived

‖x− x(k)‖ = ‖T k(x− x(0))‖ ≤ ‖T‖k‖x− x(0)‖.

For the second result, we first show that

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖ for any n ≥ 1.
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Since

x(n) − x(n−1) = Tx(n−1) + c− Tx(n−2) − c
= T (x(n−1) − x(n−2))
= T 2(x(n−2) − x(n−3)) = · · · · · · = Tn−1(x(1) − x(0)),

we have
‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖.

Let m ≥ k,

x(m) − x(k)

=
(
x(m) − x(m−1)

)
+
(
x(m−1) − x(m−2)

)
+ · · ·+

(
x(k+1) − x(k)

)
= Tm−1

(
x(1) − x(0)

)
+ Tm−2

(
x(1) − x(0)

)
+ · · ·+ T k

(
x(1) − x(0)

)
=

(
Tm−1 + Tm−2 + · · ·T k

)(
x(1) − x(0)

)
,
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hence

‖x(m) − x(k)‖

≤
(
‖T‖m−1 + ‖T‖m−2 + · · ·+ ‖T‖k

)
‖x(1) − x(0)‖

= ‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖.

Since limm→∞ x
(m) = x,

‖x− x(k)‖
= lim

m→∞
‖x(m) − x(k)‖

≤ lim
m→∞

‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖

= ‖T‖k‖x(1) − x(0)‖ lim
m→∞

(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
= ‖T‖k 1

1− ‖T‖
‖x(1) − x(0)‖.

This proves the second result.
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Theorem

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel
methods converges for any initial vector x(0).

Proof: By assumption, A is strictly diagonal dominant, hence aii 6= 0
(otherwise A is singular) and

|aii| >
n∑

j=1,j 6=i
|aij |, i = 1, 2, . . . , n.

For Jacobi method, the iteration matrix TJ = D−1(L+ U) has entries

[TJ ]ij =

{−aij

aii
, i 6= j,

0, i = j.

Hence

‖TJ‖∞ = max
1≤i≤n

n∑
j=1,j 6=i

∣∣∣∣aijaii
∣∣∣∣ = max

1≤i≤n

1
|aii|

n∑
j=1,j 6=i

|aij | < 1,

and this implies that the Jacobi method converges.
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(Reference only) For Gauss-Seidel method, the iteration matrix
TG = (D − L)−1U . Let λ be any eigenvalue of TG and y, ‖y‖∞ = 1, is a
corresponding eigenvector. Thus

TGy = λy =⇒ Uy = λ(D − L)y.

Hence for i = 1, . . . , n,

−
n∑

j=i+1

aijyj = λaiiyi + λ

i−1∑
j=1

aijyj .

This gives

λaiiyi = −λ
i−1∑
j=1

aijyj −
n∑

j=i+1

aijyj

and

|λ||aii||yi| ≤ |λ|
i−1∑
j=1

|aij ||yj |+
n∑

j=i+1

|aij ||yj |.

Choose the index k such that |yk| = 1 ≥ |yj | (this index can always be
found since ‖y‖∞ = 1). Then
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|λ||akk| ≤ |λ|
k−1∑
j=1

|akj |+
n∑

j=k+1

|akj |

which gives

|λ| ≤
∑n

j=k+1 |akj |
|akk| −

∑k−1
j=1 |akj |

<

∑n
j=k+1 |akj |∑n
j=k+1 |akj |

= 1

Since λ is arbitrary, ρ(TG) < 1. This means the Gauss-Seidel method
converges.

The rate of convergence depends on the spectral radius of the matrix
associated with the method.

One way to select a procedure to accelerate convergence is to choose
a method whose associated matrix has minimal spectral radius.
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Successive over-relaxation (SOR) method

Definition

Suppose x̃ ∈ Rn is an approximated solution of Ax = b. The residual
vector r for x̃ is r = b−Ax̃.

Let the approximate solution x(k,i) produced by Gauss-Seidel method be
defined by

x(k,i) =
[
x

(k)
1 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)

n

]T
and

r
(k)
i =

[
r
(k)
1i , r

(k)
2i , . . . , r

(k)
ni

]T
= b−Ax(k,i)

be the corresponding residual vector. Then the mth component of r
(k)
i is

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j ,
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or, equivalently,

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix(k−1)

i ,

for each m = 1, 2, . . . , n.

In particular, the ith component of r
(k)
i is

r
(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)

i ,

so

aiix
(k−1)
i + r

(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

= aiix
(k)
i .
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Consequently, the Gauss-Seidel method can be characterized as choosing

x
(k)
i to satisfy

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
.

Relaxation method is modified the Gauss-Seidel procedure to

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii

= x
(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)

i


= (1− ω)x(k−1)

i +
ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 (1)

for certain choices of positive ω such that the norm of the residual vector
is reduced and the convergence is significantly faster.
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These methods are called for
ω < 1: under relaxation,
ω = 1: Gauss-Seidel method,
ω > 1: over relaxation.

Over-relaxation methods are called SOR (Successive over-relaxation). To
determine the matrix of the SOR method, we rewrite (1) as

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi,

so that if A = D − L− U , then we have

(D − ωL)x(k) = [(1− ω)D + ωU ]x(k−1) + ωb

or

x(k) = (D − ωL)−1 [(1− ω)D + ωU ]x(k−1) + ω(D − ωL)−1b

≡ Tωx
(k−1) + cω.
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Example

The linear system Ax = b given by

4x1 + 3x2 = 24,
3x1 + 4x2 − x3 = 30,

− x2 + 4x3 = −24,

has the solution [3, 4,−5]T .

Numerical results of Gauss-Seidel method with x(0) = [1, 1, 1]T :
k x1 x2 x3

0 1.0000000 1.0000000 1.0000000
1 5.2500000 3.8125000 -5.0468750
2 3.1406250 3.8828125 -5.0292969
3 3.0878906 3.9267578 -5.0183105
4 3.0549316 3.9542236 -5.0114441
5 3.0343323 3.9713898 -5.0071526
6 3.0214577 3.9821186 -5.0044703
7 3.0134110 3.9888241 -5.0027940
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Numerical results of SOR method with ω = 1.25 and x(0) = [1, 1, 1]T :

k x1 x2 x3

0 1.0000000 1.0000000 1.0000000
1 6.3125000 3.5195313 -6.6501465
2 2.6223145 3.9585266 -4.6004238
3 3.1333027 4.0102646 -5.0966863
4 2.9570512 4.0074838 -4.9734897
5 3.0037211 4.0029250 -5.0057135
6 2.9963276 4.0009262 -4.9982822
7 3.0000498 4.0002586 -5.0003486
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Numerical results of SOR method with ω = 1.6 and x(0) = [1, 1, 1]T :

k x1 x2 x3

0 1.0000000 1.0000000 1.0000000
1 7.8000000 2.4400000 -9.2240000
2 1.9920000 4.4560000 -2.2832000
3 3.0576000 4.7440000 -6.3324800
4 2.0726400 4.1334400 -4.1471360
5 3.3962880 3.7855360 -5.5975040
6 3.0195840 3.8661760 -4.6950272
7 3.1488384 4.0236774 -5.1735127
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Matlab code of SOR
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;
b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;
for ii = 1:n

DL(ii,ii) = A(ii,ii);
for jj = 1:ii-1

DL(ii,jj) = omega * A(ii,jj);
end
DU(ii,ii) = (1-omega)*A(ii,ii);
for jj = ii+1:n

DU(ii,jj) = - omega * A(ii,jj);
end

end
c = omega * (DL \ b); xnew = DL \ ( DU * xold ) + c;
k = 0; fprintf(’ k x1 x2 x3 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; k = k + 1; xnew = DL \ ( DU * xold ) + c;
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
diary off
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Theorem (Kahan)

If aii 6= 0, for each i = 1, 2, . . . , n, then ρ(Tω) ≥ |ω − 1|. This implies that
the SOR method can converge only if 0 < ω < 2.

Theorem (Ostrowski-Reich (Reference Only))

If A is positive definite and the relaxation parameter ω satisfying
0 < ω < 2, then the SOR iteration converges for any initial vector x(0).

Theorem (Reference Only)

If A is positive definite and tridiagonal, then ρ(TG) = [ρ(TJ)]2 < 1 and
the optimal choice of ω for the SOR iteration is

ω =
2

1 +
√

1− [ρ(TJ)]2
.

With this choice of ω, ρ(Tω) = ω − 1.
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Example

The matrix

A =

 4 3 0
3 4 −1
0 −1 4

 ,
given in previous example, is positive definite and tridiagonal.

Since

TJ = −D−1(L+ U) =

 1
4 0 0
0 1

4 0
0 0 1

4

 0 −3 0
−3 0 1

0 1 0


=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0

 ,
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we have

TJ − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ

 ,
so

det(TJ − λI) = −λ(λ2 − 0.625).

Thus,

ρ(TJ) =
√

0.625

and

ω =
2

1 +
√

1− [ρ(TJ)]2
=

2
1 +
√

1− 0.625
≈ 1.24.

This explains the rapid convergence obtained in previous example when
using ω = 1.25
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Symmetric Successive Over Relaxation (SSOR) Method
(SKIP)

Let A be symmetric and A = D + L+ LT . The idea is in fact to
implement the SOR formulation twice, one forward and one backward, at
each iteration. That is, SSOR method defines

(D + ωL)x(k− 1
2
) =

[
(1− ω)D − ωLT

]
x(k−1) + ωb, (2)

(D + ωLT )x(k) = [(1− ω)D − ωL]x(k− 1
2
) + ωb. (3)

Define {
Mω : = D + ωL,
Nω : = (1− ω)D − ωLT .

Then from the iterations (2) and (3), it follows that

x(k) =
(
M−Tω NT

ωM
−1
ω Nω

)
x(k−1) + ω

(
M−Tω NT

ωM
−1
ω +M−Tω

)
b

≡ T (ω)x(k−1) +M(ω)−1b.
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But

((1− ω)D − ωL) (D + ωL)−1 + I

= (−ωL−D − ωD + 2D)(D + ωL)−1 + I

= −I + (2− ω)D(D + ωL)−1 + I

= (2− ω)D(D + ωL)−1.

Thus
M(ω)−1 = ω

(
D + ωLT

)−1
(2− ω)D(D + ωL)−1,

then the splitting matrix is

M(ω) =
1

ω(2− ω)
(D + ωL)D−1

(
D + ωLT

)
.

The iteration matrix is

T (ω) = (D + ωLT )−1 [(1− ω)D − ωL] (D + ωL)−1
[
(1− ω)D − ωLT

]
.
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Error bounds and iterative refinement

Example

The linear system Ax = b given by[
1 2

1.0001 2

] [
x1

x2

]
=
[

3
3.0001

]
has the unique solution x = [1, 1]T .

The poor approximation x̃ = [3, 0]T has the residual vector

r = b−Ax̃ =
[

3
3.0001

]
−
[

1 2
1.0001 2

] [
3
0

]
=
[

0
−0.0002

]
,

so ‖r‖∞ = 0.0002. Although the norm of the residual vector is small, the
approximation x̃ = [3, 0]T is obviously quite poor; in fact,
‖x− x̃‖∞ = 2.
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The solution of above example represents the intersection of the lines

`1 : x1 + 2x2 = 3 and `2 : 1.0001x1 + 2x2 = 3.0001.

`1 and `2 are nearly parallel. The point (3, 0) lies on `1 which implies
that (3, 0) also lies close to `2, even though it differs significantly from the
intersection point (1, 1).
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Theorem

Suppose that x̃ is an approximate solution of Ax = b, A is nonsingular
matrix and r = b−Ax̃. Then

‖x− x̃‖ ≤ ‖r‖ · ‖A−1‖

and if x 6= 0 and b 6= 0,

‖x− x̃‖
‖x‖

≤ ‖A‖ · ‖A−1‖‖r‖
‖b‖

.

Proof: Since

r = b−Ax̃ = Ax−Ax̃ = A(x− x̃)

and A is nonsingular, we have

‖x− x̃‖ = ‖A−1r‖ ≤ ‖A−1‖ · ‖r‖. (4)

Moreover, since b = Ax, we have

‖b‖ ≤ ‖A‖ · ‖x‖.
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It implies that

1
‖x‖
≤ ‖A‖
‖b‖

. (5)

Combining Equations (4) and (5), we have

‖x− x̃‖
‖x‖

≤ ‖A‖ · ‖A
−1‖

‖b‖
‖r‖.

Definition (Condition number)

The condition number of nonsingular matrix A is

κ(A) = ‖A‖ · ‖A−1‖.

For any nonsingular matrix A,

1 = ‖I‖ = ‖A ·A−1‖ ≤ ‖A‖ · ‖A−1‖ = κ(A).
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Definition

A matrix A is well-conditioned if κ(A) is close to 1, and is ill-conditioned
when κ(A) is significantly greater than 1.

In previous example,

A =
[

1 2
1.0001 2

]
.

Since

A−1 =
[
−10000 10000
5000.5 −5000

]
,

we have

κ(A) = ‖A‖∞ · ‖A−1‖∞ = 3.0001× 20000 = 60002� 1.
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(SKIP) How to estimate the effective condition number in t-digit
arithmetic without having to invert the matrix A?

If the approximate solution x̃ of Ax = b is being determined using
t-digit arithmetic and Gaussian elimination, then

‖r‖ = ‖b−Ax̃‖ ≈ 10−t‖A‖ · ‖x̃‖.

All the arithmetic operations in Gaussian elimination technique are
performed using t-digit arithmetic, but the residual vector r are done
in double-precision (i.e., 2t-digit) arithmetic.

Use the Gaussian elimination method which has already been
calculated to solve

Ay = r.

Let ỹ be the approximate solution. Then

ỹ ≈ A−1r = A−1(b−Ax̃) = x− x̃

and

x ≈ x̃+ ỹ.
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Moreover,

‖ỹ‖ ≈ ‖x− x̃‖ = ‖A−1r‖
≤ ‖A−1‖ · ‖r‖ ≈ ‖A−1‖(10−t‖A‖ · ‖x̃‖) = 10−t‖x̃‖κ(A).

It implies that

κ(A) ≈ ‖ỹ‖
‖x̃‖

10t.

Iterative refinement

Let r = b−Ax̃, and ỹ an approximate solution of Ay = r.
Then ỹ ≈ A−1r = A−1(b−Ax̃) = x− x̃, and x ≈ x̃+ ỹ.
In general, x̃+ ỹ is a more accurate approximation to the solution of
Ax = b than x̃. One can apply this procedure repeatedly to get more and
more accurate approximate solution.
Note however, that the residual r = b−Ax̃ has to be computed in twice
the precision in order to calculate the correction ỹ accurately.
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Algorithm (Iterative refinement)

Given tolerance TOL, maximum number of iteration M , number of digits
of precision t.

Solve Ax = b in t-digit arithmetic.
Set k = 1
while ( k ≤M )

Compute r = b−Ax in 2t-digit arithmetic.
Solve Ay = r in t-digit arithmetic.
If ‖y‖∞ < TOL, then stop.
Set k = k + 1 and x = x+ y.

End while
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Example

The linear system given by 3.3330 15920 −10.333
2.2220 16.710 9.6120
1.5611 5.1791 1.6852

 x1

x2

x3

 =

 15913
28.544
8.4254


has the exact solution x = [1, 1, 1]T .

Using Gaussian elimination and five-digit rounding arithmetic leads
successively to the augmented matrices 3.3330 15920 −10.333 15913

0 −10596 16.501 −10580
0 −7451.4 6.5250 −7444.9


and  3.3330 15920 −10.333 15913

0 −10596 16.501 −10580
0 0 −5.0790 −4.7000

 .
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The approximate solution is

x̃(1) = [1.2001, 0.99991, 0.92538]T .

The residual vector corresponding to x̃ is computed in double precision to
be

r(1) = b−Ax̃(1)

=

 15913
28.544
8.4254

−
 3.3330 15920 −10.333

2.2220 16.710 9.6120
1.5611 5.1791 1.6852

 1.2001
0.99991
0.92538


=

 15913
28.544
8.4254

−
 15913.00518

28.26987086
8.611560367

 =

 −0.00518
0.27412914
−0.186160367

 .
Hence the solution of Ay = r(1) to be

ỹ(1) = [−0.20008, 8.9987× 10−5, 0.074607]T

and the new approximate solution x(2) is

x(2) = x(1) + ỹ(1) = [1.0000, 1.0000, 0.99999]T .
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Using the suggested stopping technique for the algorithm, we compute
r(2) = b−Ax̃(2) and solve the system Ay(2) = r(2), which gives

ỹ(2) = [1.5002× 10−9, 2.0951× 10−10, 1.0000× 10−5]T .

Since

‖ỹ(2)‖∞ ≤ 10−5,

we conclude that

x̃(3) = x̃(2) + ỹ(2) = [1.0000, 1.0000, 1.0000]T

is sufficiently accurate.
In the linear system

Ax = b,

A and b can be represented exactly. Realistically, the matrix A and vector
b will be perturbed by δA and δb, respectively, causing the linear system

(A+ δA)x = b+ δb

to be solved in place of Ax = b.
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Theorem (reference only)

Suppose A is nonsingular and

‖δA‖ < 1
‖A−1‖

.

Then the solution x̃ of (A+ δA)x̃ = b+ δb approximates the solution x of
Ax = b with the error estimate

‖x− x̃‖
‖x‖

≤ κ(A)
1− κ(A)(‖δA‖/‖A‖)

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.

If A is well-conditioned, then small changes in A and b produce
correspondingly small changes in the solution x.

If A is ill-conditioned, then small changes in A and b may produce
large changes in x.
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The conjugate gradient method (SKIP)

Consider the linear systems

Ax = b

where A is large sparse and symmetric positive definite. Define the inner
product notation

< x, y >= xT y for any x, y ∈ Rn.

Theorem

Let A be symmetric positive definite. Then x∗ is the solution of Ax = b if
and only if x∗ minimizes

g(x) =< x,Ax > −2 < x, b > .
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Proof:

(“ ⇒”) Rewrite g(x) as

g(x) = < x− x∗, A(x− x∗) > + < x,Ax∗ > + < x∗, Ax >

− < x∗, Ax∗ > −2 < x, b >

= < x− x∗, A(x− x∗) > − < x∗, Ax∗ >

+2 < x,Ax∗ > −2 < x, b >

= < x− x∗, A(x− x∗) > − < x∗, Ax∗ > +2 < x,Ax∗ − b > .

Suppose that x∗ is the solution of Ax = b, i.e., Ax∗ = b. Then

g(x) =< x− x∗, A(x− x∗) > − < x∗, Ax∗ >

which minimum occurs at x = x∗.
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(“⇐”) Fixed vectors x and v, for any α ∈ R,

f(α) ≡ g(x+ αv)
= < x+ αv,Ax+ αAv > −2 < x+ αv, b >

= < x,Ax > +α < v,Ax > +α < x,Av > +α2 < v,Av >

−2 < x, b > −2α < v, b >

= < x,Ax > −2 < x, b > +2α < v,Ax > −2α < v, b > +α2 < v,Av >

= g(x) + 2α < v,Ax− b > +α2 < v,Av > .

Because f is a quadratic function of α and < v,Av > is positive, f has a
minimal value when f ′(α) = 0. Since

f ′(α) = 2 < v,Ax− b > +2α < v,Av >,

the minimum occurs at

α̂ = −< v,Ax− b >
< v,Av >

=
< v, b−Ax >
< v,Av >

.
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and

g(x+ α̂v) = f(α̂) = g(x)− 2
< v, b−Ax >
< v,Av >

< v, b−Ax >

+
(
< v, b−Ax >
< v,Av >

)2

< v,Av >

= g(x)− < v, b−Ax >2

< v,Av >
.

So, for any nonzero vector v, we have

g(x+ α̂v) < g(x) if < v, b−Ax >6= 0 (6)

and

g(x+ α̂v) = g(x) if < v, b−Ax >= 0. (7)

Suppose that x∗ is a vector that minimizes g. Then

g(x∗ + α̂v) ≥ g(x∗) for any v. (8)
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From (6), (7) and (8), we have

< v, b−Ax∗ >= 0 for any v,

which implies that Ax∗ = b.
Let

r = b−Ax.

Then

α =
< v, b−Ax >
< v,Av >

=
< v, r >

< v,Av >
.

If r 6= 0 and if v and r are not orthogonal, then

g(x+ αv) < g(x)

which implies that x+ αv is closer to x∗ than is x.
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Let x(0) be an initial approximation to x∗ and v(1) 6= 0 be an initial search
direction. For k = 1, 2, 3, . . ., we compute

αk =
< v(k), b−Ax(k−1) >

< v(k), Av(k) >
,

x(k) = x(k−1) + αkv
(k)

and choose a new search direction v(k+1).
Question: How to choose {v(k)} such that {x(k)} converges rapidly to x∗?
Let Φ : Rn → R be a differential function on x. Then it holds

Φ(x+ εp)− Φ(x)
ε

= ∇Φ(x)T p+O(ε).

The right hand side takes minimum at

p = − ∇Φ(x)
‖∇Φ(x)‖

(i.e., the largest descent)

for all p with ‖p‖ = 1 (neglect O(ε)).
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Denote x = [x1, x2, . . . , xn]T . Then

g(x) =< x,Ax > −2 < x, b >=
n∑
i=1

n∑
j=1

aijxixj − 2
n∑
i=1

xibi.

It follows that

∂g

∂xk
(x) = 2

n∑
i=1

akixi − 2bk, for k = 1, 2, . . . , n.

Therefore, the gradient of g is

∇g(x) =
[
∂g

∂x1
(x),

∂g

∂x2
, · · · , ∂g

∂xn
(x)
]T

= 2(Ax− b) = −2r.
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Steepest descent method (gradient method)

Given an initial x0 6= 0.
For k = 1, 2, . . .
rk−1 = b−Axk−1

If rk−1 = 0, then stop;

else αk =
rT
k−1rk−1

rT
k−1Ark−1

, xk = xk−1 + αkrk−1.

End for

Theorem

If xk, xk−1 are two approximations of the steepest descent method for
solving Ax = b and λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues of A,
then it holds:

‖xk − x∗‖A ≤
(
λ1 − λn
λ1 + λn

)
‖xk−1 − x∗‖A,

where ‖x‖A =
√
xTAx. Thus the gradient method is convergent.
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If the condition number of A (= λ1/λn) is large, then λ1−λn
λ1+λn

≈ 1.
The gradient method converges very slowly. Hence this method is not
recommendable.

It is favorable to choose that the search directions {v(i)} as mutually
A-conjugate, where A is symmetric positive definite.

Definition

Two vectors p and q are called A-conjugate (A-orthogonal), if pTAq = 0.
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Lemma

Let v1, . . . , vn 6= 0 be pairwisely A-conjugate. Then they are linearly
independent.

Proof: From

0 =
n∑
j=1

cjvj

follows that

0 = (vk)TA

 n∑
j=1

cjvj

 =
n∑
j=1

cj(vk)TAvj = ck(vk)TAvk,

so ck = 0, for k = 1, . . . , n.
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Theorem

Let A be symm. positive definite and v1, . . . , vn ∈ Rn\{0} be pairwisely
A-orthogonal. Give x0 and let r0 = b−Ax0. For k = 1, . . . , n, let

αk =
< vk, b−Axk−1 >

< vk, Avk >
and xk = xk−1 + αkvk.

Then Axn = b and

< b−Axk, vj >= 0, for each j = 1, 2, . . . , k − 1.

Proof: Since, for each k = 1, 2, . . . , n,

xk = xk−1 + αkvk,

we have

Axn = Axn−1 + αnAvn = (Axn−2 + αn−1Avn−1) + αnAvn
...

= Ax0 + α1Av1 + α2Av2 + · · ·+ αnAvn.
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It implies that

< Axn − b, vk >
= < Ax0 − b, vk > +α1 < Av1, vk > + · · ·+ αn < Avn, vk >

= < Ax0 − b, vk > +α1 < v1, Avk > + · · ·+ αn < vn, Avk >

= < Ax0 − b, vk > +αk < vk, Avk >

= < Ax0 − b, vk > +
< vk, b−Axk−1 >

< vk, Avk >
< vk, Avk >

= < Ax0 − b, vk > + < vk, b−Axk−1 >

= < Ax0 − b, vk >
+ < vk, b−Ax0 +Ax0 −Ax1 + · · · −Axk−2 +Axk−2 −Axk−1 >

= < Ax0 − b, vk > + < vk, b−Ax0 > + < vk, Ax0 −Ax1 >

+ · · ·+ < vk, Axk−2 −Axk−1 >

= < vk, Ax0 −Ax1 > + · · ·+ < vk, Axk−2 −Axk−1 > .
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For any i

xi = xi−1 + αivi and Axi = Axi−1 + αiAvi,

we have

Axi−1 −Axi = −αiAvi.

Thus, for k = 1, . . . , n,

< Axn − b, vk >
= −α1 < vk, Av1 > − · · · − αk−1 < vk, Avk−1 >= 0

which implies that Axn = b.
Suppose that

< rk−1, vj >= 0 for j = 1, 2, . . . , k − 1. (9)

By the result

rk = b−Axk = b−A(xk−1 + αkvk) = rk−1 − αkAvk
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it follows that

< rk, vk > = < rk−1, vk > −αk < Avk, vk >

= < rk−1, vk > −
< vk, b−Axk−1 >

< vk, Avk >
< Avk, vk >

= 0.

From assumption (9) and A-orthogonality, for j = 1, . . . , k − 1

< rk, vj >=< rk−1, vj > −αk < Avk, vj >= 0

which is completed the proof by the mathematical induction.
Method of conjugate directions:
Let A be symmetric positive definite, b, x0 ∈ Rn. Given
v1, . . . , vn ∈ Rn\{0} pairwisely A-orthogonal.

r0 = b−Ax0,
For k = 1, . . . , n,

αk = <vk,rk−1>
<vk,Avk>

, xk = xk−1 + αkvk,

rk = rk−1 − αkAvk = b−Axk.
End For
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Practical Implementation

In k-th step a direction vk which is A-orthogonal to v1, . . . , vk−1

must be determined.

It allows for orthogonalization of rk against v1, . . . , vk.

Let rk 6= 0, g(x) decreases strictly in the direction −rk. For ε > 0
small, we have g(xk − εrk) < g(xk).

If rk−1 = b−Axk−1 6= 0, then we use rk−1 to generate vk by

vk = rk−1 + βk−1vk−1. (10)

Choose βk−1 such that

0 = < vk−1, Avk >=< vk−1, Ark−1 + βk−1Avk−1 >

= < vk−1, Ark−1 > +βk−1 < vk−1, Avk−1 > .
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That is

βk−1 = −< vk−1, Ark−1 >

< vk−1, Avk−1 >
. (11)

Theorem

Let vk and βk−1 be defined in (10) and (11), respectively. Then
r0, . . . , rk−1 are mutually orthogonal and

< vk, Avi >= 0, for i = 1, 2, . . . , k − 1.

That is {v1, . . . , vk} is an A-orthogonal set.

Having chosen vk, we compute

αk =
< vk, rk−1 >

< vk, Avk >
=
< rk−1 + βk−1vk−1, rk−1 >

< vk, Avk >

=
< rk−1, rk−1 >

< vk, Avk >
+ βk−1

< vk−1, rk−1 >

< vk, Avk >

=
< rk−1, rk−1 >

< vk, Avk >
. (12)
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Since

rk = rk−1 − αkAvk,

we have

< rk, rk >=< rk−1, rk > −αk < Avk, rk >= −αk < rk, Avk > .

Further, from (12),

< rk−1, rk−1 >= αk < vk, Avk >,

so

βk = −< vk, Ark >

< vk, Avk >
= −< rk, Avk >

< vk, Avk >

=
(1/αk) < rk, rk >

(1/αk) < rk−1, rk−1 >
=

< rk, rk >

< rk−1, rk−1 >
.
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Algorithm (Conjugate Gradient method (CG-method))

Let A be s.p.d., b ∈ Rn, choose x0 ∈ Rn, r0 = b−Ax0 = v0.
If r0 = 0, then N = 0 stop, otherwise for k = 0, 1, . . .

(a). αk = <rk,rk>
<vk,Avk>

,

(b). xk+1 = xk + αkvk,
(c). rk+1 = rk − αkAvk,
(d). If rk+1 = 0, let N = k + 1, stop.

(e). βk = <rk+1,rk+1>
<rk,rk>

,

(f). vk+1 = rk+1 + βkvk.

Theoretically, the exact solution is obtained in n steps.

If A is well-conditioned, then approximate solution is obtained in
about

√
n steps.

If A is ill-conditioned, then the number of iterations may be greater
than n.
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Select a nonsingular matrix C so that

Ã = C−1AC−T

is better conditioned.
Consider the linear system

Ãx̃ = b̃,

where

x̃ = CTx and b̃ = C−1b.

Then

Ãx̃ = (C−1AC−T )(CTx) = C−1Ax.

Thus,

Ax = b ⇔ Ãx̃ = b̃ and x = C−T x̃.
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Since

x̃k = CTxk,

we have

r̃k = b̃− Ãx̃k = C−1b−
(
C−1AC−T

)
CTxk

= C−1(b−Axk) = C−1rk.

Let

ṽk = CT vk and wk = C−1rk.

Then

β̃k =
< r̃k, r̃k >

< r̃k−1, r̃k−1 >
=

< C−1rk, C
−1rk >

< C−1rk−1, C−1rk−1 >

=
< wk, wk >

< wk−1, wk−1 >
.
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Thus,

α̃k =
< r̃k−1, r̃k−1 >

< ṽk, Ãṽk >
=

< C−1rk−1, C
−1rk−1 >

< CT vk, C−1AC−TCT vk >

=
< wk−1, wk−1 >

< CT vk, C−1Avk >

and, since

< CT vk, C
−1Avk > = (vk)

T CC−1Avk = (vk)
T Avk

= < vk, Avk >,

we have

α̃k =
< wk−1, wk−1 >

< vk, Avk >
.

Further,

x̃k = x̃k−1 + α̃kṽk, so CTxk = CTxk−1 + α̃kC
T vk

and

xk = xk−1 + α̃kvk.
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Continuing,

r̃k = r̃k−1 − α̃kÃṽk,

so

C−1rk = C−1rk−1 − α̃kC−1AC−TCT vk

and

rk = rk−1 − α̃kAvk.

Finally,

ṽk+1 = r̃k + β̃kṽk and CT vk+1 = C−1rk + β̃kC
T vk,

so

vk+1 = C−TC−1rk + β̃kvk = C−Twk + β̃kvk.
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Algorithm (Preconditioned CG-method (PCG-method))

Choose C and x0. Set r0 = b−Ax0, solve Cw0 = r0 and CT v1 = w0.
If r0 = 0, then N = 0 stop, otherwise for k = 1, 2, . . .

(a). αk =< wk−1, wk−1 > / < vk, Avk >,
(b). xk = xk−1 + αkvk,
(c). rk = rk−1 − αkAvk,
(d). If rk = 0, let N = k + 1, stop.

Otherwise, solve Cwk = rk and CT zk = wk,
(e). βk =< wk, wk > / < wk−1, wk−1 >,
(f). vk+1 = zk + βkvk.
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