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Outline

@ Norms of vectors and matrices (Reference only)
© Eigenvalues and eigenvectors (Reference only)
© Iterative techniques for solving linear systems
@ Error bounds and iterative refinement

© The conjugate gradient method (SKIP)
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Definition
|| -] : R — R is a vector norm if
(i) ||z|| =0, Vz € R",
(ii) ||z|l = 0 if and only if x = 0,
(iii) |az| = |af||z|| V o € R and z € R™,
(V) llz+yll < llzll + llyll V 2,y € R™.

Definition

The ¢35 and {4, norms for & = [x1, 29, -- ,x,]" are defined by

1/2
= {3 I
|lz|l2 = { x; } and  ||z|eo @%l%“

The 45 norm is also called the Euclidean norm.
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Theorem (Cauchy-Bunyakovsky-Schwarz inequality)

For each x = [x1,xa,- - ,xn]T andy = [y1,y2, - ,yn]T in R™,

n n /2 ¢ p 1/2
aly =73 i < {Zw%} {ny} = [|zl2 - [lyll2-
=1 =1 =1

Proof: If z =0 or y = 0, the result is immediate.
Suppose x # 0 or y # 0. For each o € R,

n

0< |lz—ayl3 =D (i — ap:)? Zx —2azx1yz+a2zyz,

i=1

and

n n n
203wy < Yo +02 >y =l + oyl
=1 =1 =i
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Since ||z]]2 > 0 and ||y||2 > 0, we can let

_lzle
Il

to give

(ﬂwh) 3 i | <l + 1208 02 = o3
1I — - ’
lyllz lyl3

=1

Thus

n
2Ty =i < ||zllallyll2.

=1
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For each z,y € R",

Iz + Yl = max |a; +yif < maX(|~’0i! + lyil)
1<:i< 1<i<
£ e || + max !yz! = [|2]loo + [|¥lloo
and
n
lz+yll3 = D (zi+y)° Zx +2szyz+zyz
i=1
< lzll3 + 2||9L‘||2||y||2 + llyllz = (Hﬂfllz + IIyllz) :
which gives
lz +yll2 < llzll2 + [lyll2-
Definition

A sequence {z(F) € R"}%° | is convergent to = with respect to the norm
|| |l if Ve >0, 3 an integer N(e) such that

|z® —z| <&, ¥V k> N(e).
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Theorem

{z®) € R"}2 | converges to = with respect to || - ||« if and only if
lim m(k) =z, Vi=1,2,...,n
k—o0

Proof: "=" Given any € > 0, 3 an integer N(¢) such that

max |:c — ;| = |2®) — z]|oo < &, ¥V k> N(e).
1<i<n

This result implies that

]azz(-k) —zl<e, Vi=1,2,...,n
Hence
lim $(k) =x;, V1.
k—o00
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“<" For a given € > 0, let N;(¢) represent an integer with

21"

— x| <&, whenever k> N;(e).
Define

N(e) = 11%%2% N;(e).

If K> N(eg), then

(k) — ||k
max [z, =z = |2 — o0 <.
This implies that {z(*)} converges to = with respect to || - |co- O
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Theorem
For each x € R",

[z]lo0 < [lzll2 < Vnllz]o-

Proof: Let x; be a coordinate of x such that

n
213 = Jz;1* < Y aF = |lall3,
i=1

50 [|z[lco < [|z[|2 and

3

s0 [[z]l2 < v/nl|z|oo- -
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Definition
A matrix norm || - || on the set of all n x n matrices is a real-valued
function satisfying for all n x n matrices A and B and all real number a:
(i) 114]l > o;
(i) ||A|l =0 if and only if A = 0;
(iii) leeAll = lalllAll;
(v) lA+ Bl < [[All + IIBI;
(v) lIAB| < [ AlllIBII; )
Theorem
If || - || is a vector norm on R™, then
[All = max || Az|
fl=ll=1
is @ matrix norm. )

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra Fall 2020 10/87



For any z # 0, we have x = z/||z|| as a unit vector. Hence

( IzH) H ”ﬁ]”

I|A] = e |Az| = max

Corollary

[ Az]| < [|A] - [|z]]-

Theorem
If A = la;;] is an n x n matrix, then

[A]loo = max Z |aijl-

1<i<n
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Proof:

Let = be an n-dimension vector with

1= [|zlloo = max |q].
Then
n
[AZ]|e = juax Zlaijwj
]:

n n
<  max E la;j| max |z;| = max g lagj].
1<i<n 4 1<j<n 1<i<n 4
Jj=1 7j=1
Consequently,
llzllco=1

n
41 = o 4ol < oo 3 o
J:

On the other hand, let p be an integer with

n n
> lagsl = maZ!%‘L
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and x be the vector with

e 1, ifay >0,
J -1, if apj < 0.

Then
|zlloc =1 and ap;z; = |ag;l, ¥ j=1,2,...,n,

SO

n n n n
HAﬂﬂlloo21211&531 Zaz‘jfﬂj > Zapﬁj = Z|apj| =1§%§Zlaul-
j=1 J=1 j=1 j=1

This result implies that

n
[Alloo = max |42l > gglz |aijl-
g=1
which gives
n
J:
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Eigenvalues and eigenvectors

Definition (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

p(\) = det(A — AI).

Definition (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues of the matrix A. If X is an eigenvalue of A and x # 0 satisfies
(A—X)x =0, then x is an eigenvector of A corresponding to the
eigenvalue .

Definition (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The
spectral radius of A is

p(A) = max{|Al; A is an eigenvalue ofA}.

v
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Theorem
If A is an n x n matrix, then

(i) 1All2 = /p(AT A);
(ii) p(A) < ||All for any matrix norm.

Proof: Proof for the second part. Suppose ) is an eigenvalue of A and
x # 0 is a corresponding eigenvector such that Az = Az and ||z| = 1.
Then

Al = Ml = [IAz]l = [[Az]] < [ Allll<] = 1Al

that is, |A\| < ||A||. Since X is arbitrary, this implies that
p(A) = max || < [[4]] s

Theorem

For any A and any = > 0, there exists a matrix norm || - || such that

p(A) <[ Al < p(A) +e.
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Definition
We call an n x n matrix A convergent if

lim (A%);; =0Vi=1,2,...,n and j=1,2,...,n.

k—00

Theorem
The following statements are equivalent.

@ A is a convergent matrix;

Q lim ||A%|| =0 for some matrix norm;
k—oo

Q lim ||A"|| = 0 for all matrix norm;
k—o0

0 p(4) <1L;

Q lim AFz =0 for any z.
k—00
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lterative techniques for solving linear systems

@ For small dimension of linear systems, it requires for direct techniques.

o For large systems, iterative techniques are efficient in terms of both
computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A
into
A=M—-(M-A),

for some matrix M, which is called the splitting matrix. Here we assume
that A and M are both nonsingular. Then the original problem is
rewritten in the equivalent form

Mz = (M — A)x +b.
This suggests an iterative process
a® = (I = M 'A)z* D 4 M—1p =Tk 4 ¢
where T is usually called the iteration matrix. The initial vector z(©)

be arbitrary or be chosen according to certain conditions.
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Two criteria for choosing the splitting matrix M are

o 2 is easily computed. More precisely, the system Mz(*) = y is easy
to solve;
@ the sequence {x(k)} converges rapidly to the exact solution.
Note that one way to achieve the second goal is to choose M so that
M~ approximate A~1,
In the following subsections, we will introduce some of the mostly
commonly used classic iterative methods.
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Jacobi Method
If we decompose the coefficient matrix A as
A=D-L-U,

where D is the diagonal part, L is the strictly lower triangular part, and U

is the strictly upper triangular part, of A, and choose M = D, then we
derive the iterative formulation for Jacobi method:

® = DL + U)z*~ + D1,

With this method, the iteration matrix 7 = D~ '(L + U) and ¢ = D~ 'b.
Each component 2® can be computed by

a

i—1 n
2 = b@-—zaiﬂg'k_l) - aijmg'k—l) / i
j=1

j=it+1
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anl‘gk) + a121’§k_1) + Cl1:>,95£;k_1) +-+ alnx(k_l) = b
amxgk_l) + aggxgk) + a23$§k_1) GFoocaF a2nx(k_1) by
anlﬂf(k_l) ar an2x(k_1) “F an3x§k_1) S o0 qe annxgtk) = bn-

Algorithm (Jacobi Method)

Given x(o), tolerance TOL, maximum number of iteration M.
Set k= 1.
While k < M and ||z — 2|y > TOL

Setk=k+1, 20 =2

Fori=1,2,...,n

i— 0 n 0
T = <bi - Zj:ll aijaz§~ = Pl aing )) /an'

End For
End While
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Example

Consider the linear system Az = b given by

E1 5 101‘1 — Tr9 + 2[13'3 = 6,
Ey: —x1 + 1laxy — r3 + 3x4 = 25,
Es : 2x1 — zo + 10x3 — ry = —11,
E4 o 3562 — r3 + 8.1E4 = 15
which has the unique solution = = [1,2, —1,1]T.
Solving equation FE; for x;, for i = 1,2, 3,4, we obtain
T = 1/10xe — 1/5z3 + 3/5,
xo = 1/11z + 1/11zs — 3/11z4 + 25/11,
x3 = —1/bx; + 1/10z9 + 1/10z4 — 11/10,
x4 = — 3/8z2 + 1/8z3 + 15/8.
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Then Az = b can be rewritten in the form x = T'z + ¢ with

0 1/10 —1/5 0 3/5

| yn 0 1/11 -3/11 | 2511
T=1_15 110 o 110 | ™ =1 _11/10
0 -3/8 1/8 0 15/8

and the iterative formulation for Jacobi method is
z®) =1z L ¢ for k= 1,2,....

The numerical results of such iteration is list as follows:
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k T T T3 Ty

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 22727 -1.1000 1.8750
2 1.0473 1.7159 -0.8052 0.8852
3 09326 2.0533 -1.0493 1.1309
4 1.0152 1.9537 -0.9681 0.9738
5 09890 2.0114 -1.0103 1.0214
6 1.0032 1.9922 -0.9945 0.9944
7 0.9981 2.0023 -1.0020 1.0036
8 1.0006 1.9987 -0.9990 0.9989
9 0.9997 2.0004 -1.0004 1.0006
10 1.0001 1.9998 -0.9998 0.9998
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2.4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; ¢(2,1) = 25/11; ¢(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + ¢; k = 0;
fprintf(" k  x1 x2  x3 x4 \n');
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; xnew = T * xold + c; k = k + 1;
fprintf('%3.0f ' k);
for jj = 1:n
fprintf(’%5.4f ' xold(jj));
end
fprintf("\n');
end
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Gauss-Seidel Method

When computing J:Ek) fori > 1, xﬁ’“), e ,l‘z(]i)l have already been
computed and are likely to be better approximations to the exact
Z1,...,%i—1 than xgk_l), . ,:vy:l). It seems reasonable to compute xl(-k)
using these most recently computed values. That is

(k) (k—1) (k—1) (k—1)

a11ry -+ aex + a1325 + et apmy, — b
a21$§k) + “22-T§k) + a23$§k_1) + o agpaY = by
a31x§k) + “32x§k) + assx;(gk) + oo+ agazFY = by
anlxgk—l) n amxgk—l) n angxgk—l) botaga® = b

This improvement induce the Gauss-Seidel method.
The Gauss-Seidel method sets M/ = D — L and defines the iteration as

z® = (D - L) 'Uz*Y + (D - L) .
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That is, Gauss-Seidel method uses 7i; = (D — L)~ 'U as the iteration
matrix. The formulation above can be rewritten as

z®) = p~1 (Lx(k) + Uz®*D 4 b) :

Hence each component .’L'Z(-k) can be computed by

i—1 n
$7(k) = bi — Zaijxék) — Z aijx§k71) /aii.
J=1

j=i+1

@ For Jacobi method, only the components of z(*=1) are used to
compute ) Hence :UZ(-k),i =1,...,n, can be computed in parallel
at each iteration k.

@ At each iteration of Gauss-Seidel method, since azgk) can not be
computed until a:gk), . 751?§]i)1 are available, the method is not a

parallel algorithm in nature.
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Algorithm (Gauss-Seidel Method)

Given 2(9), tolerance TOL, maximum number of iteration M.
Set k =1.
Fori=1,2,...,n

— (b, =1y (0) y
Ty = (bz = D j=1 Gig T = i Gy ) /“n

End For

While k < M and ||z — 20|y > TOL
Setk=k+1, 20 =z.
Fori=1,2,...,n

_(p. i—1 n (0)
Xy = (bz - Zj:l Qg5 — Zj:@q_l Q5T ) /an

End For
End While
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Example

Consider the linear system Az = b given by

Ei: 10z, — r9 + 2x3 = 6,
Ey: —x1 + 1laxy — r3 + 3x4 = 25,
Es : 2x1 — zo + 10x3 — rqy = —11,
E4 5 3x2 — TS 8$4 = 15

which has the unique solution z = [1,2, —1,1]%.

Gauss-Seidel method gives the equation

(k) _ 1,.(k=1) 1, .(k=1) 3
(k) T Ek ) TR |
o T Lw S A e,
i T L W T
Ty = gLy~ + 8Z3 + =
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The numerical results of such iteration is list as follows:

k I T2 T3 T4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.3273 -0.9873 0.8789
2 1.0302 2.0369 -1.0145 0.9843
3 1.0066 2.0036 -1.0025 0.9984
4 1.0009 2.0003 -1.0003 0.9998
5 1.0001 2.0000 -1.0000 1.0000

@ The results of Example appear to imply that the Gauss-Seidel method

is superior to the Jacobi method.

@ This is almost always true, but there are linear systems for which the

Jacobi method converges and the Gauss-Seidel method does not.

@ See Exercises 17 and 18.
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);

A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3.3)=10; A(3,4)=-1; A(4.2)=3; A(4,3)=1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;

for ii = 1:in

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);

end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);
end
k = 0; fprintf(’ k x1 x2 x3 x4 \n');

while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; k = k + 1;
for ii = 1:n
xnew(ii) = b(ii);
for jj = L:ii-1
xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
fprintf('%3.0f ' k);
for jj = 1in
fprintf('%5.4f ' xold(jj));
end
fprintf('\n’);
end
diary off
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Lemma (20)

If p(T) < 1, then (I — T)~! exists and

(I-T)" ZTZ—I+T+T2
=0

Proof: Let A be an eigenvalue of T', then 1 — X is an eigenvalue of [ — 7.
But [A] < p(A4) <1,s01—X#0and 0 is not an eigenvalue of I — T,
which means (I — T) is nonsingular.

Next we show that (I —T) "' =T+ T +T?+ ---. Since

. T) (Z Tz) = — TTVH-l,
=0

and p(T') < 1 implies ||T™| — 0 as m — oo, we have

(I-T) (ﬂl@wiw)zu—ﬂ (iT’):I. O
=0

1=0
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Theorem

For any z(©) € R" | the sequence produced by

z®) = Tx-1) 4 c, k=1,2,..

converges to the unique solution of x = Tx + c if and only if

p(T) < 1.

Proof: Suppose p(T') < 1. The sequence of vectors 2®) produced by the
iterative formulation are

2V = 720 1 ¢
2@ = Tz® 4 ¢c=1220 4 (T +I)c
2@ = T2® 4 c=T320 1 (T2 4+ T +1)e

In general

g®) = Tkg© (71 L TE2 L ... T 4 [)e.
TR



Since p(T) < 1, limp_oo T*2(®) = 0 for any z(O) € R”. By Lemma 20,
(T4 T2 4. .. T+ DNes T -T)e, as k— oo

Therefore

k—o0 k—o0

o0
lim 2®) = lim TFz© + ZTj c=I-T)"te
=0

Conversely, suppose {z¥)} = z = (I —T) 'c. Since

z—2® = Te+c—Tz* D —c=T(x—2* ) =Tz - z-2)
= .. =TFz —zO).

Let 2 =2 — 29, Then

lim T%z = lim (z — z®) = 0.
k—ro0 k—00

It follows from theorem p(T') < 1. |
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Theorem
If |T|| < 1, then the sequence =) converges to x for any initial 2\°) and
© [z — 2P| <|IT|*z - 29|

k
© ||z — 2| < Lyl — 2.

Proof- Since z = Tz + ¢ and z®) = Tz(+:=1 4 ¢,

r—2® = Togic-— Tk ¢
= T(z—z*1)
T (z — P2y =...... = TF(z — 2O).

The first statement can then be derived
lz — 2@ = |T*@ - zO)|| < |IT))*lle - 2.
For the second result, we first show that
12 — @D < 7|2 — 2O for any n > 1.
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Since

x(n) _ x(n—l) — Tx(n_l) +c— Tx(n—Q) —c
T?(z("2) — =3y =...... =71 (zM — zO),
we have

=™ = 2] < 72D - 0.

Let m > k,
2(m) _ (k)
- (x<m> _ m(m—l)) 4 ($<m—1> p(m= 2)) T ($(k+1) _ x(k))
Tt (x(l) - x(0)> + 72 <x(1) > +o - TF <x(1) — x(0)>

_ (Tm—l Lme2 gy .Tk) (x(l) _ 0 )) ,
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hence
2™ — 2®)|

(K1t 4 1T 4 T o = )

IN

= |TIF (It TR 1) 2 - 2O

Since limy, 00 2™ = z,

[ERER
= lim [2™ —z®)

m—r0o0
< tim 7Y (TR T 1) @ — o)
= T = 2@ Tim (JT)"E 4 T2 1)

m—00
1
= |TI* [l — )
1T
This proves the second result. ]
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Theorem

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel
methods converges for any initial vector z(%).

Proof: By assumption, A is strictly diagonal dominant, hence a;; # 0
(otherwise A is singular) and

n

l@s| = Z laij|, 1=1,2,...,n.
J=1j#1

For Jacobi method, the iteration matrix 7y = D~!(L + U) has entries

—i. i#j,
(T1li; = {Oa“

Hence
2 Qi 1 n
1Tl = max >, |25\ = max o D lag] <1,
= el =

and this implies that the Jacobi method converges.
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(Reference only) For Gauss-Seidel method, the iteration matrix

Tg = (D — L)7'U. Let X be any eigenvalue of T and ¥, [|y]lec = 1, is a

corresponding eigenvector. Thus
Tey=Xy — Uy=XD—L)y.

Hence fori=1,...,n,

- Z QY5 = Aaiiyi + A Z Ai5Yj.

Jj=i+1
This gives
g=1 n
Aaigi = =AY aiy;— Y iy
j=1 =i+l
and

[ Allaiillyil < IAIZ |aijlly;| + Z |aijlly;l-

j=i+1

Choose the index k such that |yk] =1 > |y;| (this index can always be

found since ||y|lcc = 1). Then

Fall 2020
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k—1 n

Mlakl < MDY largl + Y lak]

j=1 j=k+1
which gives

Z?:kJrl ’akj’ Z?:kﬂ ’akj’ -
lark] — 521 lakg] i lak]

Al <

Since A is arbitrary, p(T¢z) < 1. This means the Gauss-Seidel method
converges. L]

@ The rate of convergence depends on the spectral radius of the matrix
associated with the method.

@ One way to select a procedure to accelerate convergence is to choose
a method whose associated matrix has minimal spectral radius.

Wei-Cheng Wang (NTHU) Fall 2020  39/87



Successive over-relaxation (SOR) method

Definition

Suppose T € R" is an approximated solution of Az = b. The residual
vector r for Zisr =b— AZ.

Let the approximate solution x(*¥) produced by Gauss-Seidel method be
defined by

(ki) [xgk)"“,xgk)l’xl(k D) r

and
T A
Tz(k) = [r§1)7 Tg:)a o0 7T£L]Z)i| =b— AX(’M)

be the corresponding residual vector. Then the mth component of rl(k) is

(k—1)
E am]x E am]a; ,
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or, equivalently,
( - N )
k) (K (k-1 (k-1)
Tpvi = bm — Zam]:vj — Z amjT; — Qi ,
j=1 j=i+1

foreachm=1,2,...,n.
(k)

In particular, the ith component of r;™ is
i—1 n
k k k—1 k—1
Tz(z) = bz — ZCLUIE ) — Z aijl‘§~ ) — CL”IZ( ),
j=1 j=i+1

SO

i—1 n
agry D o) = b=y aga) = 37 Y
j=1 j=it+1
()

= 04T
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Consequently, the Gauss-Seidel method can be characterized as choosing

xz(k) to satisfy

(k) (k=1) ik
A4

Relaxation method is modified the Gauss-Seidel procedure to

(k)

)
— (k D42 0y — Z% _ Z aijfg‘kil) B aiingkq)

j=i+1
i—1 n
k—1 w k k—1
= (1 - UJ)$§ ) + ; bl - Zaing- ) - Z aing- ) (1)
w j=1 j=i+1

for certain choices of positive w such that the norm of the residual vector
is reduced and the convergence is significantly faster.
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These methods are called for

w < 1: under relaxation,

w = 1: Gauss-Seidel method,

w > 1: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To
determine the matrix of the SOR method, we rewrite (1) as

aiixgk) +w Zzi aij:cgk) =(1- w)aiixz(-k_l) —w z": aijx§k_1) + wb;,
j=1 j=i+1
so that if A= D — L — U, then we have
(D —wL)z® = [(1 — w)D + wU] 2%~ + wb
or

% = (D—wD) (1 -w)D+wU]z* Y + (D —wL) '
( ) I( ) ] ( )
= Tww(kil) + Cy-
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Example

The linear system Az = b given by

41 + 3x9 = 24,
3r1 + 4xo — xr3 = 30,
— To + 4dx3 = —24,
has the solution [3,4, —5]7.
o Numerical results of Gauss-Seidel method with (9 = [1,1,1]”:
k il i) I3
0 1.0000000 1.0000000 1.0000000
1 5.2500000 3.8125000 -5.0468750
2 3.1406250 3.8828125 -5.0292969
3 3.0878906 3.9267578 -5.0183105
4 3.0549316 3.9542236 -5.0114441
5 3.0343323 3.9713898 -5.0071526
6 3.0214577 3.9821186 -5.0044703
7 3.0134110 3.9888241 -5.0027940
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o Numerical results of SOR method with w = 1.25 and 2 = [1,1,1]":

k I X9 I3

0 1.0000000 1.0000000 1.0000000
1 6.3125000 3.5195313 -6.6501465
2 2.6223145 3.9585266 -4.6004238
3 3.1333027 4.0102646 -5.0966863
4 29570512 4.0074838 -4.9734897
5 3.0037211 4.0029250 -5.0057135
6 29963276 4.0009262 -4.9982822
7 3.0000498 4.0002586 -5.0003486

Wei-Cheng Wang (NTHU)

Fall 2020

45 /87



o Numerical results of SOR method with w = 1.6 and (¥ = [1,1,1]7"

k I X9 I3

0 1.0000000 1.0000000 1.0000000
1 7.8000000 2.4400000 -9.2240000
2 1.9920000 4.4560000 -2.2832000
3 3.0576000 4.7440000 -6.3324800
4 20726400 4.1334400 -4.1471360
5 3.3962880 3.7855360 -5.5975040
6 3.0195840 3.8661760 -4.6950272
7 3.1488384 4.0236774 -5.1735127
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Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;

b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;

DL(iijj) = omega * A(iij);

end
DU(ii i) = (1-omega)*A(iiii);
for jj +1:n

i) = - omega * A(ii j);

end
end
c = omega * (DL \ b); xnew = DL \ ( DU * xold ) + c;
k = 0; fprintf(’ k x1 x2 x3 \n');

while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; k = k + 1; xnew = DL \ ( DU * xold ) + ¢;
fprintf(’%3.0f ' k);
for jj = 1in
fprintf(’%5.4f ', xold(jj));
end
fprintf("\n");
end
diary off

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra Fall 2020 47 /87



Theorem (Kahan (SKIP))

If a;; # 0, for eachi=1,2,...,n, then p(T,,) > |w — 1|. This implies that

the SOR method can converge only if0<w<2.

v

Theorem (Ostrowski-Reich (SKIP))

If A is positive definite and the relaxation parameter w satisfying
0 < w < 2, then the SOR iteration converges for any initial vector z(9).

Theorem

If A is positive definite and tridiagonal, then p(T¢) = [p(T7)]* < 1 and
the optimal choice of w for the SOR iteration is

2
1+ 4/1 = [p(T)))?

W =

With this choice of w, p(T,,) = w — 1.

o
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Example

The matrix
4 3 0
A= 3 4 -1 |,
0 -1 4

given in previous example, is positive definite and tridiagonal.

Since
100 0 -3
T, = -DYL+U)=|0 % 0 -3 0
00 1 0 1
0 —0.75 0
= | -0.75 0 025 |,
0 025 0
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we have

—Xx —0.75 0
Ty—X=| -07 -\ 025 |,
0 025 -\
SO
det(T; — M) = —A(\? — 0.625).
Thus,
p(Ty) = v0.625
and

2 2
w = = ~ 1.24.
1++/1=[p(T)))? 1++v1-0.625
This explains the rapid convergence obtained in previous example when
using w = 0.125 U
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Symmetric Successive Over Relaxation (SSOR) Method
(SKIP)

Let A be symmetric and A = D + L + L”. The idea is in fact to
implement the SOR formulation twice, one forward and one backward, at
each iteration. That is, SSOR method defines

(D+wL)z®2) = [(1—w)D—wL]z® +wb, (2)
(D+wLD)z® = [(1-w)D—wL]z*~2) + wb. (3)
Define

M,: = D +wl,
N,: =(1—w)D —wL”.

Then from the iterations (2) and (3), it follows that

k)

2® = (MZTNIMGIN,) 2*=Y 4w (MyTNI MG+ M) b

= T(w)z® D + M(w) .
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But

(1—w)D —wL) (D +wL) L +1

=(~wL - D —wD+2D)(D +wL)™ +1
= JT+2-w)DD+wL) 1 +1

= (2— w)D(D + wL) L.

Thus
M) ™ =w(D+wL”) " (2 - w)D(D +wL)™},

then the splitting matrix is

M(w) = M(D +wL)D™ (D +wL™).

The iteration matrix is

T(w) = (D +wL®) ™ [(1 —w)D —wL] (D +wL)™ [(1 —w)D — wL™];
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Error bounds and iterative refinement

Example
The linear system Az = b given by

1 2 I . 3
1.0001 2 xo | | 3.0001

has the unique solution z = [1,1]7.

The poor approximation & = [3,0]7 has the residual vector

A 3 - 1 2137 0
"= =1 3.0001 1.0000 2|0 |~ | —0.0002 |’

s0 [|7]|ec = 0.0002. Although the norm of the residual vector is small, the
approximation Z = [3,0]7 is obviously quite poor; in fact,
|z — Z|loo = 2. £
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The solution of above example represents the intersection of the lines
l1: x1+229=3 and Fly: 1.0001z; + 2x5 = 3.0001.

¢1 and /o are nearly parallel. The point (3,0) lies on ¢; which implies
that (3,0) also lies close to /5, even though it differs significantly from the
intersection point (1,1).

X2 A

Y

1__

(1, 1)

(3,0

. : N
G, —voohlz' G

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra Fall 2020 54 /87



Theorem

Suppose that T is an approximate solution of Ax = b, A is nonsingular
matrix and r = b — AZ. Then

lz — 2| < |lr[l - 1A
and ifx # 0 and b # 0,

[l = |

I r
e =l Z g ay el

111"

Proof: Since
r=b— A% = Az — Az = A(x — &)
and A is nonsingular, we have
o — || = A7 || < A7) Il
Moreover, since b = Az, we have
ol < Al - [|=]]-
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It implies that

L4
— < . 5
ERAL )

Combining Equations (4) and (5), we have

T —Z All-|A~L
lo =21 _ A1 1A
||l i

Definition (Condition number)

The condition number of nonsingular matrix A is

k(4) = [|A] - [ A1)

For any nonsingular matrix A,
1= |1 = [lA- A7 < (Al |A7H] = w(A).
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Definition
A matrix A is well-conditioned if x(A) is close to 1, and is ill-conditioned
when k(A) is significantly greater than 1.

In previous example,

12
A_[1.0001 2]

Since

Al —10000 10000
~ | 5000.5 —5000 |’

we have

K(A) = || Alloo - |A™ oo = 3.0001 x 20000 = 60002 > 1.
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(SKIP) How to estimate the effective condition number in ¢-digit
arithmetic without having to invert the matrix A?

o If the approximate solution Z of Az = b is being determined using
t-digit arithmetic and Gaussian elimination, then

Irll = llb — Azl ~ 107" A] - |12

@ All the arithmetic operations in Gaussian elimination technique are
performed using t-digit arithmetic, but the residual vector r are done
in double-precision (i.e., 2¢-digit) arithmetic.

@ Use the Gaussian elimination method which has already been
calculated to solve

Ay =r.
Let § be the approximate solution. Then
A Yr=A"'b-AZ)=z—%

and
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Moreover,

I3l =~ llz =2l = A" |
< (AT el = AT 0T AL - [12]1) = 107" 2 ]ls(A).

It implies that

k(A) ~ H‘lf” 10°.
1]l

(END OF SKIP)

Iterative refinement

Let r = b— AZ, and ¢ an approximate solution of Ay = r.

Then j~ A lr = A1 (b— A%) =2 — %, and x =~ & + .

In general, T + ¢ is a more accurate approximation to the solution of

Az = b than Z. One can apply this procedure repeatedly to get more and
more accurate approximate solution.

Note however, that the residual r = b — AZ has to be computed in twice
the precision in order to calculate the correction ¢ accurately.

v
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Algorithm (Iterative refinement)

Given tolerance T'OL, maximum number of iteration M, number of digits
of precision t.
Solve Az = b in t-digit arithmetic.
Set k=1
while (k< M )
Compute r = b — Az in 2¢-digit arithmetic.
Solve Ay = r in t-digit arithmetic.
If [|y]|lcoc < TOL, then stop.
Setk=k+1and x =z +y.
End while
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Example
The linear system given by

3.3330 15920 —10.333 T1 15913
= | 28.544

2.2220 16.710 9.6120 To | =
1.5611 5.1791 1.6852 3 8.4254

has the exact solution z = [1,1,1]7.

Using Gaussian elimination and five-digit rounding arithmetic leads
successively to the augmented matrices
[ 3.3330 15920 —10.333 | 15913

0 —10596  16.501 | —10580
0 —7451.4 6.5250 | —7444.9
and
[ 3.3330 15920 —10.333 15913
0 —10596 16.501  —10580
0 0 —5.0790 —4.7000
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The approximate solution is
1) = [1.2001,0.99991,0.92538] .

The residual vector corresponding to & is computed in double precision to
be

r = p— 470
[ 15913 ] [ 3.3330 15920 —10.333 1.2001
— | 28544 | — | 2.2220 16.710 9.6120 0.99991
| 84254 | | 1.5611 5.1791 1.6852 0.92538
(15913 | [ 15913.00518 ~0.00518
— | 28544 | — | 28.26987086 | = | 0.27412914
| 84254 | | 8.611560367 —0.186160367

Hence the solution of Ay = (1) to be

7™M = [—0.20008, 8.9987 x 1072, 0.074607]"

and the new approximate solution z(?) is

2? = 2™ 1 5™ = [1.0000, 1.0000, 0.99999] "
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Using the suggested stopping technique for the algorithm, we compute
r2 = b — A%®? and solve the system Ay?) = r(2) which gives

7 = [1.5002 x 107°,2.0951 x 107*°,1.0000 x 107°]".
Since
15 o0 < 1075,
we conclude that
73 = 73 4 5@ = [1.0000, 1.0000, 1.0000]"

is sufficiently accurate. Ol
In the linear system

Az = b,

A and b can be represented exactly. Realistically, the matrix A and vector
b will be perturbed by § A and db, respectively, causing the linear system

(A+5A)z = b+ 6b

to be solved in place of Ax = b.
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Theorem (reference only)
Suppose A is nonsingular and

1

SA| <
loAl < =y

Then the solution & of (A + 0A)x = b+ 6b approximates the solution x of
Ax = b with the error estimate

[ K(A) 160l , [0l
[l = 1= n(A)IBAT/TA ( IR )

o If A is well-conditioned, then small changes in A and b produce
correspondingly small changes in the solution z.

o If A is ill-conditioned, then small changes in A and b may produce
large changes in x.
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The conjugate gradient method (SKIP)

Consider the linear systems
Axr=b

where A is large sparse and symmetric positive definite. Define the inner
product notation

<zy>=axly forany z,yeR"

Theorem

Let A be symmetric positive definite. Then x* is the solution of Ax = b if
and only if x* minimizes

g(x) =<z, Ax > -2 <z,b>.

Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra Fall 2020 65 /87



Proof:

(*=") Rewrite g(x) as

g(z) = <z—2"Alx—2")>+ <z, A" >+ <z* Az >
—<z* Az > -2 <uxz,b>
= <z—z"A(z—z%) > - <z*, Az* >
2 <x, Ar* > -2 <x,b>
= <zx—zAlx—2%) > — <z Ax* > +2 <z, Ax" —b>.

Suppose that x* is the solution of Az = b, i.e., Ax* = b. Then
g(z) =<z —2*, Az — 2*) > — < 2*, Az* >

which minimum occurs at © = x*.
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("«<") Fixed vectors = and v, for any a € R,
fla) = g(z + av)
<x+av,Ar + aAv > -2 < x+ av,b >

= <z Az >+a<v, Az > +a <z, Av > +a® < v, Av >
—2<z,b>2a<v,b>

<z, Ar>-2<z,b>420 <v, Az > —2a < v,b>+a? < v, Av >
= g(x)+2a<v,Ar —b> +a® <v,Av > .

Because f is a quadratic function of « and < v, Av > is positive, f has a
minimal value when f’(a) = 0. Since

fl(@)=2<v,Ax — b > +2a < v, Av >,
the minimum occurs at

<v,Ar—-b> <wv,b— Az >
<v,Av> = <wv Av>

a =
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and

<v,b—Ax >

<v,b— Az >
<wv,Av > ’

gz +dav) = f(a)=g(z) -2

<wv,b— Ax >
+( <wv,Av >
<v,b— Az >?
o <v,Av>

2
) <w,Av >

= g(x)
So, for any nonzero vector v, we have
g(x +av) < g(z) if <v,b—Ax >#0 (6)
and
glx+av) =g(z) if <v,b— Az >=0. (7)
Suppose that z* is a vector that minimizes g. Then
g(x* + awv) > g(x*) for any wv. (8)
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From (6), (7) and (8), we have
<v,b— Ax* >=0 for any v,

which implies that Az* = b. Ol
Let

r=>b— Ax.

Then

_<v,b-Ax> <wv,r>
o <v,Av> <, Av>]

If  # 0 and if v and r are not orthogonal, then
g9(z + av) < g(x)

which implies that z 4+ aw is closer to z* than is z.
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Let 2(9) be an initial approximation to z* and v") £ 0 be an initial search
direction. For £k =1,2,3,..., we compute

_ <ok p— Azgk-1) >
e O

20 = gD )

and choose a new search direction v(*+1)
Question: How to choose {v(*)} such that {(¥)} converges rapidly to z*?
Let ® : R™ — R be a differential function on z. Then it holds

®(z +ep) — O(z)

. =Vo(2)'p+0(e).
The right hand side takes minimum at
V() :
p=—-—=———(i.e., the largest descent)
V()]

for all p with |[p|| = 1 (neglect O(¢)).
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Denote = = [x1,22,...,2,]". Then
g(z) =<z, Ax > -2 < x,b >= ZZame:ﬁj QZ.’,EZ -
=1 j=1
It follows that

dg -
=L (2) =2 apwi — 2by, for k=1,2,...,
B x) 2 0T i, for n

Therefore, the gradient of g is

T
Vo) = | g @) g (o) = 2dz =)= -
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Steepest descent method (gradient method)

Given an initial zg # 0.
For k=1,2,...
Th—1=b— Az
If rp,_1 =0, then stop;
T
e
else a = T Ay

End for

T = Tp—1 + QgTEp—_1.

Theorem

If Ty, x1_1 are two approximations of the steepest descent method for
solving Ax =b and \y > Ay > --- > A, > 0 are the eigenvalues of A,
then it holds:

Al — Ap

zp— 2|4 < | ——
o =2l < (Ppe

) lexot — ",

where ||z||a4 = VaT Azx. Thus the gradient method is convergent.

v
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o If the condition number of A (= A\1/\,) is large, then ii;iz 2

The gradient method converges very slowly. Hence this method is not
recommendable.

o It is favorable to choose that the search directions {v()} as mutually
A-conjugate, where A is symmetric positive definite.

Definition
Two vectors p and q are called A-conjugate (A-orthogonal), if p” Aq = 0. J
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Lemma

Let vy,...,v, # 0 be pairwisely A-conjugate. Then they are linearly
independent.

Proof: From

n
0= E ijj
Jj=1

follows that
0= (vp)'A Z cv; | = Z cj(vr)T Av; = cx(vi)T Avg,
j=1 J=1
soc, =0, fork=1,...,n. £
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Theorem

Let A be symm. positive definite and vy, ..., v, € R™\{0} be pairwisely
A-orthogonal. Give xg and let ro =b— Axg. Fork=1,...,n, let

< Vg, b— Aa:k_l >
Q. —
< vk,Avk >

and xp = xp_1 + QpUE.

Then Ax,, = b and

<b— Axy,v; >=0, foreach j=1,2,...,k—1.

Proof: Since, for each k=1,2,...,n,
T = Th—1 + AUk,
we have

Az, = Ax,_1+ anAv, = (Azp—9 + ap_1Av,—1) + anAvy,

= Axg+ aAvi + agAvg + - - - + o Avy,.
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It implies that

< Az, — b, v >
= < Axg—bvg > +ag < Avy,vp >+ + oy < Avy, v >
= < Axg—bvp > tag < vy, Avp >+ + ay < vy, Avg >
= < Axg—b,vp > tay < v, Avg >
< ’Uk,b—Axk,1 >
<vk,Avk >
= < Axg—bvp >+ <wvp,b— Axp_4 >
= < Axgp—b,v >
+ < vg,b— Axg + Axg — Ax1 + - — Axp_o + Axp_o — Axppq >
= < Axg—b,vp >+ <wvp,b— Axg > + < v, Axg — Az >
4+ < g, Avp_g — Axp_q1 >
= <, Axg— Axy >+ -+ < v, Axg_o — Axp_1 > .

= < Axg—bvp >+ < vy, Avg >
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For any i
T = X1 +ov; and  Ax; = Az + o Av;,
we have
Az, — Azx; = —o; Av;.
Thus, fork=1,...,n,

< Az, — b, v, >
= —o1 < Avp > —- - — a1 < v, Avg_1 >=0

which implies that Az,, = b.
Suppose that

<7rp-1,v; >=0 for j=1,2,... . k-1 (9)
By the result
e =b— Axp =b— A(xp_1 + apvg) = rg—1 — axAvg
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it follows that

< TRV > = < Tp_1,Uk > —p < Avg, v >
< v, b — Axp_q >
= < Tkg_1,V > — < Awvg, v >
’ < vk,Avk > ’
= 0.

From assumption (9) and A-orthogonality, for j =1,...,k —1
< Py Vj >=< Tp—1,05 > —0 < Avg,v; >=10

which is completed the proof by the mathematical induction. Ol
Method of conjugate directions:

Let A be symmetric positive definite, b, g € R™. Given

v, ..., 0, € R"\{0} pairwisely A-orthogonal.

To = b— A:L’o,
Fork=1,...,n,
_ <Ug,TE_1> _
Uk = =y A » Tk = Tk—1 + QkV,

T = Tp_1 — apAvp = b — Axy.
End For
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Practical Implementation

@ In k-th step a direction v, which is A-orthogonal to vy,...,vE_1
must be determined.

@ It allows for orthogonalization of 7 against vy, ..., vg.

@ Let r; # 0, g(x) decreases strictly in the direction —ry. For e >0
small, we have g(zy — erg) < g(zk).

If r._1 =b— Axr_1 # 0, then we use r;_1 to generate vy by
Vg = Tk—1 + Br—1Vk—1. (10)
Choose (1 such that

0 = <vp_1,Av >=<vp_1, Arp—1 + Br_1Avg_1 >
= < Up_1,Arg_1 > +Bp-1 < vp_1, Avg_1 > .
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That is
< Vg1, Argp_1 >

1=— : 11
Pr-t < Vg_1, Avg_1 > (11)
Theorem
Let v, and Py_1 be defined in (10) and (11), respectively. Then
ro,...,Tk_1 are mutually orthogonal and
< vk, Av; >=0, for i=1,2,... k—1.
That is {v1,...,v;} is an A-orthogonal set.
Having chosen v, we compute
o <wgy 1> < Tgpo1+ Br_1Vk—1,Tk—1 >
ap = =
< v, Avg > < vy, Avg >
< Tg-1,Tk—1 > < Vg—1,Tk—1 >
= ——————— +
< Uk,AUk > < Uk,AUk >
< The1,Tk—1 >
< vg, Avg >
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Since
Tk = Tp—1 — QpAvg,
we have
< Tg, Tk >=<TE_1,Tk > —0y < Avg,rp >= —ap < g, Avg > .
Further, from (12),

< Th—1,Th—1 >= o < Vg, Avg, >,

SO
B, = < vy, Arp > < T, Avg >
k < v, Avg > < v, Avg >
(1/0%) < Tk, Tk > . < Tk, Tk >

(1) < The1,Th1 > < The1,Thk—1 >
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Wei-Cheng Wang (NTHU) Iterative Tech. in Matrix Algebra

Algorithm (Conjugate Gradient method (CG-method))

Let A be s.p.d., b € R", choose zyp € R™, ro = b — Axy = vp.

If 1o = 0, then N = 0 stop, otherwise for Kk =0,1,...

(a) o = <<v7,;kﬁk>>

(b). Trt1 = xk + vy,
(¢). Tht1 =1k — apAuvy,
(d). f rp 1 =0, let N =k + 1, stop.

_ <Tk41,Tk41>
(e). Br = W,

(f). vk41 = k41 + Brvg.

@ Theoretically, the exact solution is obtained in n steps.

o If A is well-conditioned, then approximate solution is obtained in

about /n steps.

o If A is ill-conditioned, then the number of iterations may be greater

than n.
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Select a nonsingular matrix C' so that

A=ctac™
is better conditioned.
Consider the linear system
Ai =b,
where
i=CTz and b=C"'p
Then
Az = (C7tACTT)(CTx) = C 1 Ax.

Thus,

Ar=b & Az =0 and z=C"T37.
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Since

.f'k = CTa:k,
we have
fr = b—Ai=C"'b— (C7'AC™T) CTxy,
= Cil(b = A.’L‘k) = Cilrk.
Let
Vg = CT’Uk and  wg = C_lrk.
Then
,é . < T, Tk > . < C‘lrk,C_lrk >
¥ < Tpe1,Tp—1 > < C7lrp_q,C7lrpq >
< Wk, W, >

< Wg—1, Wg—1 >
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Thus,

G = < ,Fk;—l,fk—l > _ < C‘lrk_l,C_lrk_l >
< Vg, AV, > < CTy,, CLAC-TCTy, >
_ < Wk—1, Wk—1 >
< CTvk,C_lAvk >
and, since
< CTu,, CMAv, > = (vp)T €O Avy = (vp) T Avy,
= <, Avg >,
we have
Gy = < Wk—1,Wk—1 >.
< vk,Avk >
Further,

Tk = Tp—1 + OV, SO CT{Ek = CTxk_1 4F dkCTvk
and
Tp = Tp_1 + QpUE.
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Continuing,

Tl = Tp—1 — O AU,

o)
Clry=Clr_y —a,CtAC T C Ty,
and
T =TEk—1 — dkAvk.
Finally,
Okt = Tk + Bed and CTopyy = Clrg + BpCT
U1 = Tk + BrUr an Vg1 = Tk + BC™ g,
SO

ver1 = CTC ey + Brur = C~Twy + Brug.
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Algorithm (Preconditioned CG-method (PCG-method))

Choose C and zg. Set o = b — Axg, solve Cwy = ¢ and CTv; = wy.
If 7o = 0, then N = 0 stop, otherwise for £k =1,2, ...
(a). ap =< w1, wp—1 >/ < vk, Avg, >,
(b). Tp = Tp—1 + QpUL,
(c). rk = rp—1 — agpAug,
(d). f rp, =0, let N =Fk+ 1, stop.
Otherwise, solve C'wy, = 1, and C'T 2, = wy,
(e). Br =< wg,wr, >/ < Wg—1, Wp—1 >,
(f). vky1 = 21 + Brvk.
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