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Numerical Differentiation

e = i TR = o)

Question
How accurate is

f(@o +h) — f(wo),
- .

Suppose a given function f has continuous first derivative and f” exists.
From Taylor's theorem

1
f@+h) = f@) + F/@)h+ SR,
where £ is between = and = + h, one has

fioy— LEE W = @) b

1" _
LS L) =
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+O(h).

flz+h) - f(x)
2 h



Hence it is reasonable to use the approximation

f@+h) - fz)

/ ~
Py~
which is called forward finite difference, and the error involved is
=21l <t max |50
2 = 2 te(z,a+h)

Similarly one can derive the backward finite difference approximation

f/(a:) ~ f($) — i(l‘ — h) (1)

which has the same order of truncation error as the forward finite
difference scheme.
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The forward difference is an O(h) scheme. An O(h?) scheme can also be
derived from the Taylor's theorem

@R
S (&)h?,

flath) = f@)+ f@h+ 5 @k +

1
6
fle—h) = f@) - F@h+ 3" @h

6

where £ is between x and  + h and & is between z and z — h. Hence

flz+h) = f@— ) = 2 @ + [ (&) + @I

and
h) — —h
f’(x) _ f($ I )th(x ) . %[f///(&) + f”/(fg)]hz
Let
M = ze[xn_lg’);rh] f"(z) and m = ze[zlillllg+h]f (2).
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If /""" is continuous on [z — h,z + h], then by the intermediate value
theorem, there exists £ € [v — h,z + h] such that

£(6) = 31" (&) + £

Py = LEEWICD) Ly SO TE=) | o)

This is called center difference approximation and the truncation error is

h2
el = = £"(€)

Similarly, we can derive an O(h?) scheme from Taylor's theorem for f”(z)

" _f(x+h>_2f<x)+f(x_h) 1
f (x) - h2 - Ef(4)(£)h27

where £ is between z — h and x + h.
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Polynomial Interpolation Method

Suppose that (zo, f(x0)), (z1, f(z1)) -+, (zn, f(zy)) have been given,
we apply the Lagrange polynomial interpolation scheme to derive

=" (@) Lifa)
i=0

where

- r — Ty
Li(z) =[] T wj_-
g=04#i """

Since f(z) can be written as

) ; fl@i)L(z) + ﬁﬂ"*”(&m)w@),

where

n
Hf"_%
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fl) = lzof(wi)LZ(w)Jr(n+1),f("+1)(£z)w'(:v)
i (nil)l ($)%f(n+1)(’5’”)

Note that

Hence a reasonable approximation for the first derivative of f is
fl(z) =Y fla)Li(x).
i=0

When z = xy, for some 0 < k < n,

n

w(zg) =0 and w'(zg) = H (xg — x;).
i=0,i#k
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Hence

n

fllae) =Y f@i)Li(aw) +

1=0

n

o) I @e—=), ()

i=0,i#k

1
(n+1)!

which is called an (n + 1)-point formula to approximate f/(z).
e Three Point Formulas

Since
Lo(x) = (x — z1)(z — z2)

‘ (w0 — 1) (z0 — 72)

we have
2r — 11 — X9

/ —

o) = (xo — x1)(w0 — 22)
Similarly,

9% — 10 — 2% — xp —
(@) = S and Li(z) = S

(21 — 0) (21 — 22) (22 — z0) (22 — 21)
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for each j = 0,1,2. Assume that

1 =xo+ h and x5 = 29 + 2h, for some h # 0.

Then
Flaw) = 7 [-3s0) +27(w) - 1) + 2106
Flay = 7[5+ 3] - 29,
Play = 7 [5G0 - 21 + $1(e)] + 20,
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That is

, 1[ 3 1 W @)
fi(xo) = 7 —2f($0)+2f(£c()+h)—2f(x0+2h):|+3f (o),
) 17 1 1 R e
Planth) = 3 |-5fe0 + 5o+ 2m)] - £, ()
- 2
Plan+2m) = 3 [5/0) =210+ 1)+ 3 oo+ 20| + O E)9

Using the variable substitution = for xo + h and z¢ + 2h in (3) and (4),
respectively, we have

2
f(wo) = % [=3f(x0) +4f (wo + h) = f(zo + 2h)] + %f@ (€0),(5)
2
fla) = 5rl-flzo—h)+ fz+ )] - = OE),
2
flao) = o [0~ 20) = 4f(z0 — ) + 3 (z0)] + = O (€a). (6)

Note that (6) can be obtained from (5) by replacing h with —h.
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e Five-point Formulas

F(#0) = = [f(zo— 2h) — 8f(xo— )+ 8f (w0 + h) — f(zo + 2)]

)
ar %f (6),
where € € (xg — 2h, xo + 2h) and
Fao) = o [~25(xo) +48f (mo + h) — 36f(zo + 2h)
4
+  16f(xo 4 3h) — 3f (w0 + 4h)] + %f(“’” (&)

where € € (xg, o + 4h).
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Round-off Error

Consider

, 1 h? 3
Flwo) = op[=flzo—h) + f(zo +h)] - < &),

where %Qf(?’)(gl) is called truncation error. Let f(xo+ h) and f(zo — h)
be the computed values of f(xg+ h) and f(zo — h), respectively. Then
f(zo+h) = f(zo + h) + e(zo + h)
and
f(wo = h) = f(xo — ) + e(zo — h).

Therefore, the total error in the approximation

f(z (o — e(x —e(xg — 2
f’(:ro)—f( 0+h)2hf( 0o—h) _ e 0+h)2h (zo — h) —%f(3)(£1)

is due in part to round-off error and in part to truncation error.
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Assume that
(&) < M.

le(zo £ h)| <e and |f!
Then

F(z0) — f(zo +h)2hf($o —h) < %

2
+ %M =e(h).

Note that e(h) attains its minimum at h = {/3¢/M.
In double precision arithmetics, for example, € & |f(xo = h)| x 10716, The

minimum is O(vV/Me2) = O(10719).
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Richardson’s Extrapolation

Suppose Vh # 0 we have a formula N (h) that approximates an unknown
value M

M — Nyi(h) = Kih + Koh? + K3h3 4+ - -+ | (7)

for some unknown constants K1, Ko, K3,.... If K1 # 0, then the
truncation error is O(h). For example,

z — f(z ae " A (g
PO (RO (G il PO OO YO

Goal

Find an easy way to produce formulas with a higher-order truncation error.J

Replacing h in (7) by h/2, we have

h h h? h3
M—N1<§>+K1§+K22+K3§+'--. (8)
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Subtracting (7) with twice (8), we get

where

No(h) = 2N, (;‘) — Ni(h) =N, <Z> - {Nl (;L) - Nl(h)} :

which is an O(h?) approximation formula.
Replacing h in (9) by h/2, we get

M=Ny(2) = Z2p2 _208p3 1
2 <2> sl (10)
Subtracting (9) from 4 times (10) gives
h K.
3M = 4N, <2> _N2(h)+3T3h3+... 7

which implies that

M = [Ng (h> 1 Nalh/2) _NZ(h)] T T A O

2 3 8 8
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Using induction, M can be approximated by
M = Np(h) + O(h™),

where

Np(h) = Np_q (g) n Nm—l(ZLQ_)l—_Z\lfm_l(h).

Centered difference formula. From the Taylor's theorem

fl@+h) = f@)+hf @)+ (@) + 5 (@) + 5 FO (@) + B 7O (z) + - -
fl@—h) = f@)—hf'(@)+ 5 ()~ B " (x)+ 27 f D (z) - B F O (z) + - ..

we have

f(x+h)— f(x—h)=2hf(z)+ —
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and, consequently,

f(wo+h) — flwo—h) [hZ

f(wo) = o7 37

h2
3!

Ny(h) — [

Replacing h in (11) by h/2 gives

2 24 1920

Fa0) = Ny (B) = 52" (ao) = s O an) = -

Subtracting (11) from 4 times (12) gives

4

f(@o) = Na(h) + h—f(5)(x0) 4.

480

where

h4
) + 1)+

No(h) = [4]\71 (ﬁ> - Nl(h)] =N (ﬁ> 4 Malh/2) = (k)

3 2 2

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ.

Fall 2020

h4
) + g O + -]

18 / 72



In general,
f'(z0) = Nj(h) + O(h*)

with

2

Nj—1(h/2) —

N;j(h) = Nj_, <§> + T j=h)

—_

Example

Suppose that zp = 2.0, h = 0.2 and f(z) = xze®. Compute an
approximated value of f/(2.0) = 22.16716829679195 to six decimal places.

Solution. By centered difference formula, we have

2.0 +0.2) — £(2.0 — 0.2
Ni(0.2) = f(20+0 )th( 0-0 )=22.414160,

Ni(0.1) = f(20+0.1) ; fRO=0D) _ 99 995786,
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It implies that

N1 (0.1) — N1(0.2)
3

which does not have six decimal digits. Adding N;(0.05) = 22.182564, we
get

N5(0.2) = N1(0.1) + = 22.166995

N1(0.05) — N1(0.1)
3

= 22.167157

N3(0.1) = N1(0.05) +

and

No(0.1) — N»(0.2)
15

= 22.167168

N3(0.2) = N5(0.1) +

which contains six decimal digits.
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O(h) O(n%)

O(h?)
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Remark

In practice, we are often encountered with the situation where the order of
the numerical method is unknown. That is, the error expansion is of the
form

M — N(h) = KihP' + Koh?? + K3h?* + - -, (13)

where p1,p2,--- are unknown. Solving for the leading order p;, together
with the primary unknowns M and K, requires 3 equations, which can be
obtained from, for example, the numerical results at h, h/2 and h/4:

M—N(h) = K+,

M-N®) = K (g)z e (14)
M-N(3) = Ki(3)"+
The answer is given by
o VB = N(B)
p1 = 1083

N(5) - N(%)

Once p; is known, Richardson extrapolation can be proceeded as before.
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Elements of Numerical Integration
The basic method involved in approximating the integration

b
[ t@da. (15)

is called numerical quadrature and uses a sum of the type

b n
[ 1@y den Y s, (16)
@ =0

The method of quadrature in this section is based on the polynomial
interpolation. We first select a set of distinct nodes {xg, x1,...,x,} from
the interval [a,b]. Then the Lagrange polynomial

n

Po(e) =Y fla)Li(e) = 3 fla) [[ =2
=0

7B — B
i=0 =0 ~ " J

I="

JFi
is used to approximate f(x). With the error term we have
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n (n+1 n
f(&) = Pa(x) + Bn(x) = flwi) Li(z) + an [[@— =),

=0 =0

where (; € [a,b] and depends on z, and

/abf(x)dac _ /an(x)dx—i—/bEn(x)dx
- foz/ d:::—l- +1 /f”“ Cxﬁ)m—xl

The quadrature formula is, therefore,

n

/ab f(z)dz z/ z)dx = Zf (x / z)dx = Zcif(a%), (18)

=0

b o @
. ‘ . T — Ty
Ci —/a Li(z)dz —/a | | P dx. (19)
j=0
J#i
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Moreover, the error in the quadrature formula is given by

E= et 1 / Gl Cx) H)(a: — x;) dz, (20)
for some (, € [a, b].
Let us consider formulas produced by using first and second Lagrange
polynomials with equally spaced nodes. This gives the Trapezoidal rule
and Simpson's rule, respectively.
Trapezoidal rule: Let zg = a,z1 = b,h = b — a and use the linear
Lagrange polynomial:

_(:fol) . (x — x) .
Pl(l’)—i(xo_xl)f( 0)+7(x1_$0)f( 1)-
Then
b N N T — T
/f(x)dw = / [io_g;))f(xo)‘f‘((xl_;()))f(xl) dzx

/ " (¢(x))(x — x0)(z — x1)dz. (21)
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Theorem (Weighted Mean Value Theorem for Integrals)
Suppose f € Cla,b], the Riemann integral of g(x)

b n
/a g(z)dr = lim _}0;9(:@)&:@-,

max Ax;

exists and g(x) does not change sign on [a,b]. Then 3 ¢ € (a,b) with

[ 1@z = 5 [ gton

v

Since (z — o) (z — x1) does not change sign on [zg, z1], by the Weighted
Mean Value Theorem, 3 ¢ € (z, 1) such that

1

/ (¢ m—xo)(m—ml)dm:f”(g)/ (x — zo)(x — z1)dx

Zo

3 4l 3
- O[5 - BER | =)

o 6
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Consequently, Eq. (21) implies that

b x—x1)2 x — x0)2 o 3
[ @ = |2 )+ =g w)| - o)

2($0 — .2171) 2(33'1 — .%‘0)

Ir1 — X

h3 1"
= T[f(xo)‘Ff(xl)]_ﬁf (©)
h L
— §[f(a:o)+f(a?1)]—ﬁf (),

which is called the Trapezoidal rule.
y

y=flw)

y=Pw

t
a=x x=b x
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If we choose g = a, z1 = (a+b), 22 =b, h = (b—a)/2, and the
second order Lagrange polynomial

(z — z1)(z — 72)
(xo — 1) (w0 — 72)

(x — zo)(z — 1)
(z2 — @o) (w2 — 71)

) ('7; — xo)(x - .’Eg)
(21 — o) (21 — 72)

Py(z) = f(x0) + f(z1

+f(22)

to interpolate f(x), then

y

y =1
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/abf(x)dm _ /:2 |:((x_x1)(;1;—x2) Fzo) + (z — zo)(x — 22) f(x1)

xro — xl)(.r() — 1172) (.’131 — :L’o)(.’El — xg)
(x — zo)(x — 1)
(z2 — o) (w2 — ﬂfl)f(m)] dw
2 (x — o) (z — z1)(z — x2)
L / 0 =

FO () da.

Since, letting © = 2 + th,

2 (z— — 2t—1 t—2
/ S ) h/ t-lt=2
o) (900—1‘1)(1‘0—332) 0 0—1 0-—-2
o2, h
= =~ | 2=3t+2)dt =—
2/0< 3 +2)di = 2,

T3 . . 2, .
/ (x — xo)(x xg)dx:h/t 0 ¢ th
xq (1 — o) (z1 — 22) o 1—-0 1-2

2
4
= —h/(t2—2t)dt:—h,
0 3

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2020 29 /72




> _ . Doa _
/ (x —z0)(x — 1) dr - h/ t—0 t—1 "
x0 ($2—$0)(x2—$1) o 2—0 2-1

ho(? h
= = @ t)dt=—
it implies that

[ 1@ae = 1 [5r)+ g1+ 31w

+/” (z — m0)(z — 1) (z — 23)

; fO () d,

0
which is called the Simpson's rule and provides only an O(h%) error term
involving f(®). A higher order error analysis can be derived by expanding f
in the third Taylor's formula about 1. ¥ z € [a,b], 3 (; € (a,b) such that

f@) = fla) + flea o)+ o @ gy
e (4)
+f é 1)(x—x1)3+ f42gfx)<m_x1>4.
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Then
b
/f(:c)da: _ [f(l’l)(x—ld)-l- : -

WS- L

24

Note that (b — x1) = h, (a — x1) = —h, and since (x — x1)* does not

f’(l‘1)(l, —z)?+ f”(ﬂﬁl)(:v — 1)

b
2 [ 19w -0t da.

change sign in [a, b], by the Weighted Mean-Value Theorem for Integral,

there exists &; € (a,b) such that

2f(4) (‘51) h5

b b
[ 19w - o0)tda = 196 [ (@ - o)t =
a a 5
Consequently,

6 /A (
[ swyde =21+ 0 106
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31/ 72



Finally we replace f”(z1) by the central finite difference formulation

flao) = 2f (@) + flw2)  FD(&)
h?2 12

[ xy) = h?,

for some & € (a,b), to obtain
b
[ @ds = 2bf@) + 3 (Flao) - 27(@r) + flaa)
f(4)(€2)h5Jr f(4)(§1)h5

36 60
~ [%f(ﬂfo) + 3 + 3 )]
+ag 3106 - 210 1.
It can show that there exists & € (a, b) such that
[ 1@z =2 g+ asen + Sl - Lo

This gives the Slmpson s rule formulation.
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Definition

The degree of accuracy, or precision, of a quadrature formula is the largest
positive integer p such that the formula is exact for z*, when
k=0,1,...,p.

@ The Trapezoidal and Simpson's rules have degrees of precision 1 and
3, respectively.

@ The degree of accuracy of a quadrature formula is p if and only if the
error = 0 for all polynomials P(x) of degree less than or equal to p,
but E # 0 for some polynomials of degree p + 1.
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Newton-Cotes Formulas

Definition (Newton-Cotes formula)

A quadrature formula of the form

n

b
/ f@)ds~ S eif (1)

=0

is called a Newton-Cotes formula if the nodes {zg,x1,...,z,} are equally
spaced.

Consider a uniform partition of the closed interval [a, b] by

r;=a+1th, 1=0,1,...,n, h=

)

n

where n is a positive integer and h is called the step length.
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By introduction a new variable ¢ such that x = a + ht, the fundamental
Lagrange polynomial becomes

n ' n . n .
Li(x):H$_$]:Ha+f.Lt - j.hZHt. ‘7.5901'(75)-

J_:D:L‘i—xj Foa—i—zh—a—jh j:Oz—j
J#i J#i J#i

Therefore, the integration (19) gives

/L()da:_/o ©i(t)hdt = /Hl_ t, (22)
J#z

and the general Newton-Cotes formula has the form

b . b n
[ 1@do=n>s@) [ Hz_j o L F e [T
J#l

(23)
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Theorem (Closed Newton-Cotes Formulas)

Suppose that Y " a;f(x;) denotes the (n + 1)-point closed
Newton-Cotes formula with xo = a,x,, =b and h = (b—a)/n. Ifn is
even and f € C""2[a,b], then

b n n+3 £(n+2) n
/ f(z)dz = hzaif(l’i) + h(nf+2)'(§)/0 t2(t —1)--- (t — n) dt,
a i=0 ’
(24)

and if n is odd and f € C"*[a,b], then

b n hn+2f(n+1) f n
Af(x)dx:h;aif(xi)—i—ml)!()/o tt—1)---(t —n)dt,

(25)

where § € (a,b) and o; = / H —dtforZ—O,l,...,

J=0, J#Z
Consequently, the degree of accuracy is n+ 1 when n is an even integer,

and n when n is an odd integer.

v

Wei-Cheng Wang (NTHU) Fall 2020 36 / 72




@ n = 1: Trapezoidal rule

b b—a h3
[ @ de =222 @) + 10 - 157, a<g <

@ n = 2: Simpson's rule

FA) 5
90h

[ 1@re =110+ o0 + 3 160)] -0, a < e <o
@ The error term of the Trapezoidal rule is O(h?).

@ Since the rule involves f”, it gives the exact result when applied to
any function whose second derivative is identically zero, e.g., any
polynomial of degree 1 or less.

@ The degree of accuracy of Trapezoidal rule is one.

@ The Simpson's rule is an O(h®) scheme and the degree of accuracy is
three.
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Another class of Newton-Cotes formulas is the open Newton-Cotes
formulas in which the nodes

x;=x9+1ih, 1=0,1,...,n,

where
b—a

= h d h=——,
o =0t an n—+ 2

are used. This implies that x,, = b — h, and the endpoints, a and b, are
not used. Hence we label a = x_; and b = z,, 1. The formulas become

b Tnt1 n
IRCEESY A flodde =D ol @),

1

where

b
ai:/ Li(x)dzx.

The following theorem summarizes the open Newton-Cotes formulas.
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Theorem (Open Newton-Cotes Formulas)

Suppose that Y ", a;f(x;) denotes the (n + 1)-point open Newton-Cotes
formula with x_y = a, 41 =band h = (b—a)/(n+2). Ifn is even and
f € C"2[a,b], then

b B n hn+3f(n+2) ({) n+1
/a f(l‘)dl‘—h;alf(iﬂz)—FM/_l tQ(t—l)-..(t_n)dt

(26)
and if n is odd and f € C"*"[a,b], then

b n hn+2f(n+1) 6 n+1
/af(x)dx:h;aif(xi)+ml)!()/l tt—1)---(t —n)dt,

(27)

where § € (a,b) and o; = / H —dtforZ—O,l,...,

Jj= 03#2
Consequently, the degree of accuracy is n + 1 when n is an even integer,

and n when n is an odd integer.

v
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The simplest open Newton-Cotes formula is choosing n = 0 and only using
the midpoint zg = “TH’ Then the coefficient and the error term can be
computed easily as

1 " 1
aoz/ dt =2, and h (5)/ t2dt:%f”(£)h3.

. o /),

These gives the so-called Midpoint rule or Rectangular rule.
Midpoint Rule:

a—i—b)_i_l
2 3

b
| #@)do = 20f@0) + 37" = (- )f( 7, (28)

for some ¢ € (a,b).
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Composite Numerical Integration

@ The Newton-Cotes formulas are generally not suitable for numerical
integration over large interval. Higher degree formulas would be
required, and the coefficients in these formulas are difficult to obtain.

@ Also the Newton-Cotes formulas which are based on polynomial
interpolation would be inaccurate over a large interval because of the
oscillatory nature of high-degree polynomials.

@ Now we discuss a piecewise approach, called composite rule, to

numerical integration over large interval that uses the low-order
Newton-Cotes formulas.

» A composite rule is one obtained by applying an integration formula for
a single interval to each subinterval of a partitioned interval.
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To illustrate the procedure, we choose an even integer n and partition the
interval [a, b] into n subintervals by nodes a = xg < 21 < -+ < &, = b,
and apply Simpson'’s rule on each consecutive pair of subintervals. With

b—a
n

=

and z; =a+jh, j=0,1,...,n,

we have on each interval [z2;_2, z2;],

x2j 5
[ @) do = 3 [fanyen) + 45 (@rio0) + o)) - g I D6,

for some &; € (z2—2,x2;), provided that f € C*[a, b).

i l\il

|
a=x, x Xy-2 Xy-1 %y b=x,

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2020 42 / 72



The composite rule is obtained by summing up over the entire interval,
that is,

n/2

b T2
/Gf(:n)daz = ;/x%_Qf(m)dz

n/2

h R o)
- Z[§(f(mzj_Q)+4f(x2j_1)+f(xzj))—%f (&)

J=1

= 21 (eo) + 47 () + S(a2)
+f(z2) +4f(73) + f(z4)
+f(z4) +4f(x5) + f(z6)

+f(@n2) + 4f (@n-1) + flEa)] — = > FO(&)

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2020 43 / 72



Hence
b

w| >

f@)de = 2 [f(xo) +4f(x1) +2f(x2) + 4f (x3) + 2/ (z4) + 4f (25)
5 n/2

+oo o+ 2f (Tnm2) + 4f (Tno1) + £ xn]——Zf(“)

n/2 (n/2)—1
= 2 [f@0)+4) flwo)+2 D flwgy)+ f(zn)
=1 j=1
5 n/2

Z f(4)

To estimate the error associated with approximation, since f € C*[a, b],
we have, by the Extreme Value Theorem,

i e ()<f(4)(£)<maXf (),

z€[a,b] €lab

for each &; € (x2j—2,2;).
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Hence

n/2
n @) () < @ey< P (4)
min ax
mwﬁ()_;f(w_Q[mf()
and
n/2
g (4) ) <
min max .
xe[ab] Zf z€[a b]f ( )

By the Intermediate Value Theorem, there exists u € (a, b) such that

n/2
Oy =23 1),
j=1
Thus, by replacing n = (b — a)/h,
n/2 n b—a
@Wey= @)= 2 2@
3 706) = 570 = 7

Consequently, the composite Simpson's rule is derived.
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Composite Simpson's Rule

b I n/2 (n/2)—
/f(:c)dx = 3 +4Zfa:2] 1) +2 Z f(z25) + f(b)
a =i
_b—a
180 ©FO (u)ht,

where n is an even integer, h = (b—a)/n, x; = a+ jh, for
j=0,1,...,n, and some u € (a,b).
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The composite Midpoint rule can be derived in a similar way, except the
midpoint rule is applied on each subinterval [xz9;_1, x2j41] instead. That is,

A h? 1" . n
[ @ do=hfen) + S 1E) d=120 5
oy 3 2
7—1
Note that n must again be even. Consequently,

n/2 h?’ n/2

b
| @)de =203 fan) + 5 3 1)
a j=1 j=1

==

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ. Fall 2020 47 / 72



The error term can be written as

o2 b—a

Jz::lf”(fj) = §f"(ﬂ) = Wf"(/ﬁ),

for some p € (a,b).

Composite Midpoint Rule

n/2 b—a

b
[ @) de =203 fan) + 250 00 (29)
a j=1

where n is an even integer, h = (b—a)/n, ; = a+ jh, for
j=0,1,...,n, and some u € (a,b).
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To derive the composite Trapezoidal rule, we partition [a, b] by n equally
spaced nodes a = xg < x1 < --- < &, = b, where n can be either odd or
even. Apply the trapezoidal rule on [z;_1,2;] and sum them up to obtain

/abf(x)dx = Z

1"""11
n

3
-y {5 ayon) + S - 1576}

g=1

_ g {[f (@o) + f(z1)] + [f (1) + f(z2)] +
+ [f(@n-1) + f(xn) }——Zf” &)

|
!
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Hence,

b
/ f@)dr = " [f(xo)+2f(xa) + 2 (@) + -+ 2f (@nr) + £(n)

2
3 n
~5 > e
j=1
h [ n—1 I h3 w
= 5 f(a)—i—ZZf(l‘j)—l-f(b) —EZJC”(&)
j=1 ) Jj=1
h [ = - b—a ., 2
= 3 fla)+2) " flx;) + £0) | - TR

J=1

where each §; € (z-1,;) and p € (a,b).
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Composite Trapezoidal Rule

b n—1 —a
[ 1@ =5 | 1@ +2 Y 1ey)+ 50)| - S wm
a ,]:1

where n is an integer, h = (b—a)/n, x; = a+ jh, for j =0,1,...,n, and

some u € (a,b).

(30)

v
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Gaussian Quadrature

Newton-Cotes formulas:
@ The choice of nodes g, x1, ..., x, was made a priori.
@ Use values of the function at equally spaced points.

@ Once the nodes were fixed, the coefficients were determined, e.g., by
integrating the fundamental Lagrange polynomials of degree n.

(]

These formulas are exact for polynomials of degree < n (n+1, if nis
even).

This approach is convenient when the formulas are combined to form the
composite rules, but the restriction may decrease the accuracy of the
approximation.
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Gaussian quadrature
@ Chooses the points for evaluation in an optimal, rather than pre-fixed
or equally-spaced, way.
@ The nodes xg, x1,...,x, € [a,b] and the coefficients ¢y, c1, ..., ¢, are
chosen to minimize the expected error obtained in the approximation

n

b
[ t@yde~ Y @) (31)

1=0

© Produce the exact result for the largest class of polynomials, that is,
the choice which gives the greatest degree of precision.

The coefficients c¢g, c1,. .., c, are arbitrary, and the nodes zq, z1,..., Ty,
are restricted only in [a,b]. These give 2n + 2 degrees of freedom. Thus
we can expect that the quadrature formula of (31) can be discovered that
will be exact for polynomials of degree < 2n + 1.

Wei-Cheng Wang (NTHU) Fall 2020 53 / 72



Suppose we want to determine cg, ¢1, g and z; so that

/_ f@)do =~ cof(a0) + 1 (o) (32)

gives the exact result whenever f(z) is a polynomial of degree
2x2—1=3or less, i.e.,
flx) =ao+ a1z + asz? + azx®.

Since

/(ao + a1z + asx’ + a3x3)dx

= ao/ld:c—l—al/:de+a2/932d:r~l—a3/x3dx,

this is equivalent to show that (32) gives exact results when f(z) is
1,2, 2% and z3. Hence
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co+c1 = / ldx = 2,
1
cTo + i1 = / xdr = 0,
! 2
coxd +cixs = / a?dr = 3’

1
cozs + iz = / 23dx = 0.
It implies that

60:17 61:17 To = ——5» 1 =

! V3 V3
/_lf(a:)dx o f (_?> +f <?) .
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Theorem

Suppose that xg,x1,...,x, are the roots of the (n + 1)-st Lengendre
polynomial p,11, and that for each i =0,1,...,n,

T —T;
C = H L dx.
w,—a:j

If f(x) is any polynomial of degree < 2n + 1, then

n

/ f(z dac—Zch(x,)

1=0 )
Gaussian Quadrature Rule
1 n
/1 f@)de = cif(w:), (33)
- i=0
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Orthogonalization and Legendre polynomials

Definition
@ In a inner-product space, we say f is orthogonal to g, and write f | ¢
if (f,9)=0.
Q@ We write f L G if f L gforall g€ G.
© We say that a finite or infinite sequence of vectors fi, fa,... in an
inner-product space is orthogonal if (f;, f;) = 0 for all i # j, and
orthonormal if (f;, f;) = di;. )

The space of continuous functions on [a, b] with inner-product defined as

b
(f.9) = / f(#)g(x) de, (34)

is an inner-product space.
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Definition
{b0, b1, ..,Pn}, where ¢; € Cla,b] for all i =0,1,...,n, is said to be an
orthogonal set of functions if

b o o
0, when 7 # 7,
(01,05) = [ 01(a)o(0) do = 7
a a; > 0, when 7 = j.
If, in addition, «; = 1 for all 7, then the set is said to be orthonormal. )
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Legendre polynomials: Gram-Schmidt process applied to 1, 2,22, ---.

Definition J

po(z) = 1

_ - <$,p0> _
ple) = (po,po)

_ .2 (z%,po)  (=*p1) 2 1
e = (pos po) ‘ <p1,p1>p1_ 3
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Corollary

For any n > 0, the set of Legendre polynomials {py,p1,...,pn} defined
above is linearly independent and

b

for any polynomial q(z) with deg(q(z)) <n — 1.
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Let II,, denote the set of polynomials of degree at most n, that is,

II,, = {p(x) | p(x) is a polynomial and deg(p) < n}.

Theorem
Let q(x) be any nonzero polynomial of degree n + 1, and q(x) L II,,. If
xo,T1,...,Z, are the roots of q(x) in [a,b], and
b —x;
@ = / H L dx,
a 5o Ty — Ty
J#i
then

b n
/ plz)dz =Y eip(z;), forany p € Manya.
@ i=0

That is, the quadrature rule is exact for any polynomial of degree < 2n+ 1.
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Proof. For any polynomial p € Il,11, we can write
p(z) = q(x)t(x) 4 r(z),
where t(z),r(z) € II,,. Since g, 1, ...,y are roots of g(x), we have
p(xs) = qlz)t(zy) + r(x) =r(x;), i=0,1,...,n.

By assumption, ¢ L II,,, we have

b
(g,t) =/ q(z)t(x)dx = 0.

Since r(x) € II,, it can be expressed exactly in the Lagrange form
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i=0 i=0
JF
n b n
x—z
= r(x;) H . dx
P o 4o Ti T %]
JF#i
n b n
r—z
J
= p(z;) Ha: — dz
i=0 ¢ =0t
J7#i
n
= cip(@i)
=0
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If the interval [a,b] is [—1, 1], then we can obtain a set of orthogonal
polynomials called the Lengendre polynomials. The first few Lengendre

polynomials are

po()
p1()

p2(x)
p3()
pa(x)

ps(z)

Wei-Cheng Wang (NTHU) Numerical Diff. & Integ.
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1
2__
T3
I3—§I
5
6 3
a_ 9 9 @
x 7$ +35
10 5
p__ W 3, 2
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Gaussian Quadrature Rule
For a given function f(z) € C[—1, 1] and integer n,

n

/ @) de~ S esf (), (35)
=0
where xg, 1, ..., x, are the roots of the (n + 1)-st Lengendre polynomial

Pn+1, and

T — X )
¢ = H " dgx. 1=0,1,...,n.
xz—mj
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Ly

Ci

1‘0:0

00:2

o = —0.5773502692
21 = 0.5773502692

C():Cl:l

9 = —0.7745966692
T = 0
o = 0.7745966692

Co =

c1 =

©|UT ©|00 ©|ut

Cy =

o = —0.8611363116
1 = —0.3399810436
29 = 0.3399810436
3 = 0.8611363116

co = 0.3478548451
c1 = 0.6521451549
ce = 0.6521451549
c3 = 0.3478548451

xo = —0.9061798459
x1 = —0.5384693101
To =0

x3 = 0.5384693101
x4 = 0.9061798459

co = 0.2369268851
c1 = 0.4786286705
cp = 228 = 0.568888889
c3 = 0.4786286705

cs = 0.2369268851
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Romberg Integration
Recall the trapezoidal rule integral formulation

[ rwar ~ 1o

= g[f(a)+2f(a+h)+2f(a+2h)+---

+2f(a+ (n —1)h) + f(a + nh)],
whereh:b_T“. Let n = 2 and h:l’;—n“.
e If we only consider the partitions by xg, 2, and x4, and apply the
Trapezoidal rule, we have the approximation

T(n) = 2217 (a)+2f (ot 20)+ f(a+4R)] = h{F(a) +2f (et 20)+ f(a-+4R)).

e |f we apply Trapezoidal rule by xq, z1, x2,x3, and x4, then we have

T(2n) = g[f(a) +2f(a+h) + 2f(a+2h) +2f(a+ 3h) + f(a + 4h)]

_ %T(n) +hf(a+R) + fla+3R)).
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This observation shows that
o if we have computed T'(n) and the step size is half, we don’t have to
compute all the function values all over again, but just at those newly
added points.
@ In general, suppose T'(n) has been computed and the step size
—a

becomes h = bz—, then
n

T(2n) = %T(n) +BY flo+ 2= 1)), (36)

With this idea in mind, we can apply the trapezoidal rule recursively, i.e.,
we partition the interval [a, b] into 2" subintervals with n =1,2,3,...,

-
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and the integral formulation becomes

2n71
O T . \b—a
T2 =5T@")+— Z;J"(Wr(% D) (37)
Let
Ri1 = T(25).
If f € C*>|a,b], then
b o0 )
/ f(2)do — Ry = Kyhi + > Kb, (38)

=2

where each K is independent of h; and depends only on f(%_l)(a) and
f@=1(b). Replacing hy with hy1 = hi/2, we get

SU i Kl

4 4i i

b
/ f(z)dz — Ryi11=

1=2
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Subtracting Eq. (38) from 4 times Eq. (39), we have

b o0 i—1
Ryy11 — By Ky 4 K, (1-4 ;
/a f(z)dz — [Rkﬂ,l = ] = - hi+ E 5 == )

Define

Rp1— Rp—11

Rpo=Rp1+— = , fork=2,3,... n.

Apply the extrapolation procedure to those values. Continuing this ‘
notation, we have, for each £k =2,3,4,...,nand j =2,...,k, an O(hzj)
approximation formula defined by

Ry j1— Rk—1,5-1
i1

Ry ;= Rgj_1+

This is called the Romberg algorithm.
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Algorithm (Romberg Integration Algorithm)

Use the Romberg algorithm to evaluate f; f(x)dx.

R(0,0) = 3(b— a)[f(a) + f()]
Forn=1,2,...,. M

n—1 . —a
R(n,0) = 3R(n = 1,0) + "5 3552, fla+ (20— 1)'5#)

End for
Fork=1,2,...,. M
Form=kk+1,...,. M

R(n,k) = R(n,k — 1) + ¢5[R(n,k — 1) — R(n — 1,k — 1)]

End for
End for )
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Theorem
If f € Cla,b], then for each column k,

i ) = [ sy

Moreover, if f € C*™[a,b], then R(n,m) converges to fabf(x)

rate of O(h®™), where h = 2,?.

(40)

dx with a
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