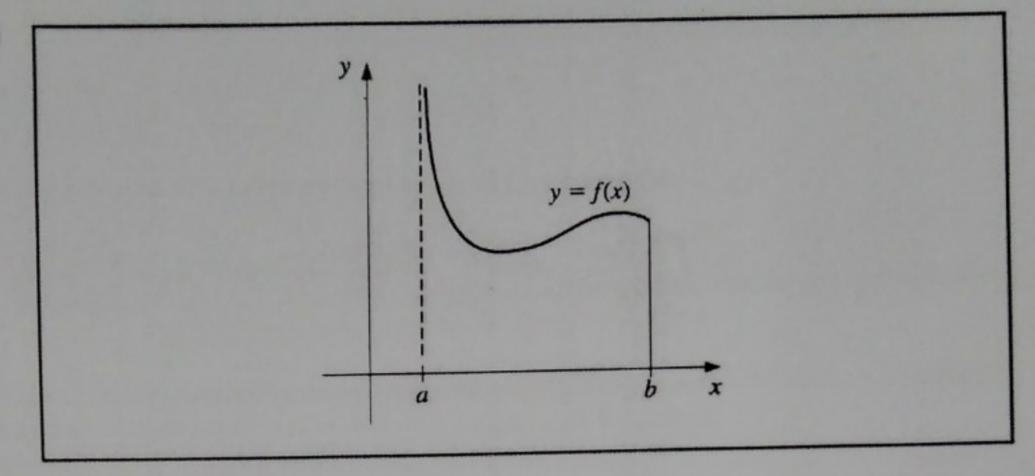
Figure 4.25



It is shown in calculus that the improper integral with a singularity at the left endpoint,

$$\int_a^b \frac{dx}{(x-a)^p},$$

converges if and only if 0 , and in this case, we define

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx = \lim_{M \to a^{+}} \frac{(x-a)^{1-p}}{1-p} \Big|_{x=M}^{x=b} = \frac{(b-a)^{1-p}}{1-p}.$$

Example 1 Show that the improper integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ converges but that $\int_0^1 \frac{1}{x^2} dx$ diverges.

Solution For the first integral, we have

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{M \to 0^+} \int_M^1 x^{-1/2} dx = \lim_{M \to 0^+} 2x^{1/2} \Big|_{x=M}^{x=1} = 2 - 0 = 2,$$

but the second integral

$$\int_0^1 \frac{1}{x^2} dx = \lim_{M \to 0^+} \int_M^1 x^{-2} dx = \lim_{M \to 0^+} -x^{-1} \Big|_{x=M}^{x=1}$$

is unbounded.

If f is a function that can be written in the form

$$f(x) = \frac{g(x)}{(x-a)^p},$$

where 0 and g is continuous on <math>[a, b], then the improper integral

$$\int_a^b f(x) \, dx$$

also exists. We will approximate this integral using the Composite Simpson's rule, provided that $g \in C^5[a, b]$. In that case, we can construct the fourth Taylor polynomial, $P_4(x)$, for g about a,

$$P_4(x) = g(a) + g'(a)(x - a) + \frac{g''(a)}{2!}(x - a)^2 + \frac{g'''(a)}{3!}(x - a)^3 + \frac{g^{(4)}(a)}{4!}(x - a)^4,$$

and write

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{g(x) - P_{4}(x)}{(x - a)^{p}} dx + \int_{a}^{b} \frac{P_{4}(x)}{(x - a)^{p}} dx. \tag{4.44}$$

Because P(x) is a polynomial, we can exactly determine the value of

$$\int_{a}^{b} \frac{P_{4}(x)}{(x-a)^{p}} dx = \sum_{k=0}^{4} \int_{a}^{b} \frac{g^{(k)}(a)}{k!} (x-a)^{k-p} dx = \sum_{k=0}^{4} \frac{g^{(k)}(a)}{k!(k+1-p)} (b-a)^{k+1-p}.$$
(4.45)

This is generally the dominant portion of the approximation, especially when the Taylor polynomial $P_4(x)$ agrees closely with g(x) throughout the interval [a, b].

To approximate the integral of f, we must add to this value the approximation of

$$\int_a^b \frac{g(x) - P_4(x)}{(x-a)^p} \, dx.$$

To determine this, we first define

$$G(x) = \begin{cases} \frac{g(x) - P_4(x)}{(x-a)^p}, & \text{if } a < x \le b, \\ 0, & \text{if } x = a. \end{cases}$$

This gives us a continuous function on [a, b]. In fact, $0 and <math>P_4^{(k)}(a)$ agrees with $g^{(k)}(a)$ for each k = 0, 1, 2, 3, 4, so we have $G \in C^4[a, b]$. This implies that the Composite Simpson's rule can be applied to approximate the integral of G on [a, b]. Adding this approximation to the value in Eq. (4.45) gives an approximation to the improper integral of f on [a, b], within the accuracy of the Composite Simpson's rule approximation.

Example 2 Use the Composite Simpson's rule with h = 0.25 to approximate the value of the improper integral

$$\int_0^1 \frac{e^x}{\sqrt{x}} dx.$$

Solution The fourth Taylor polynomial for e^x about x = 0 is

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

so the dominant portion of the approximation to $\int_0^1 \frac{e^x}{\sqrt{x}} dx$ is

$$\int_0^1 \frac{P_4(x)}{\sqrt{x}} dx = \int_0^1 \left(x^{-1/2} + x^{1/2} + \frac{1}{2} x^{3/2} + \frac{1}{6} x^{5/2} + \frac{1}{24} x^{7/2} \right) dx$$

$$= \lim_{M \to 0^+} \left[2x^{1/2} + \frac{2}{3} x^{3/2} + \frac{1}{5} x^{5/2} + \frac{1}{21} x^{7/2} + \frac{1}{108} x^{9/2} \right]_M^1$$

$$= 2 + \frac{2}{3} + \frac{1}{5} + \frac{1}{21} + \frac{1}{108} \approx 2.9235450.$$

253

For the second portion of the approximation to $\int_0^1 \frac{e^x}{\sqrt{x}} dx$, we need to approximate

$$\int_0^1 G(x) dx$$
, where

$$G(x) = \begin{cases} \frac{1}{\sqrt{x}} \left(e^x - P_4(x) \right), & \text{if } 0 < x \le 1, \\ 0, & \text{if } x = 0. \end{cases}$$

Table 4.13 lists the values needed for the Composite Simpson's rule for this approximation.

Using these data and the Composite Simpson's rule gives

$$\int_0^1 G(x) dx \approx \frac{0.25}{3} [0 + 4(0.0000170) + 2(0.0004013) + 4(0.0026026) + 0.0099485]$$

$$= 0.0017691.$$

Hence,

Table 4.13

x

0.00

0.25

0.50

0.75

1.00

G(x)

0.0000170

0.0004013

0.0026026

0.0099485

$$\int_0^1 \frac{e^x}{\sqrt{x}} dx \approx 2.9235450 + 0.0017691 = 2.9253141.$$

This result is accurate to within the accuracy of the Composite Simpson's rule approximation for the function G. Because $|G^{(4)}(x)| < 1$ on [0, 1], the error is bounded by

$$\frac{1-0}{180}(0.25)^4 = 0.0000217.$$

Right-Endpoint Singularity

To approximate the improper integral with a singularity at the right endpoint, we could develop a similar technique but expand in terms of the right endpoint b instead of the left endpoint a. Alternatively, we can make the substitution

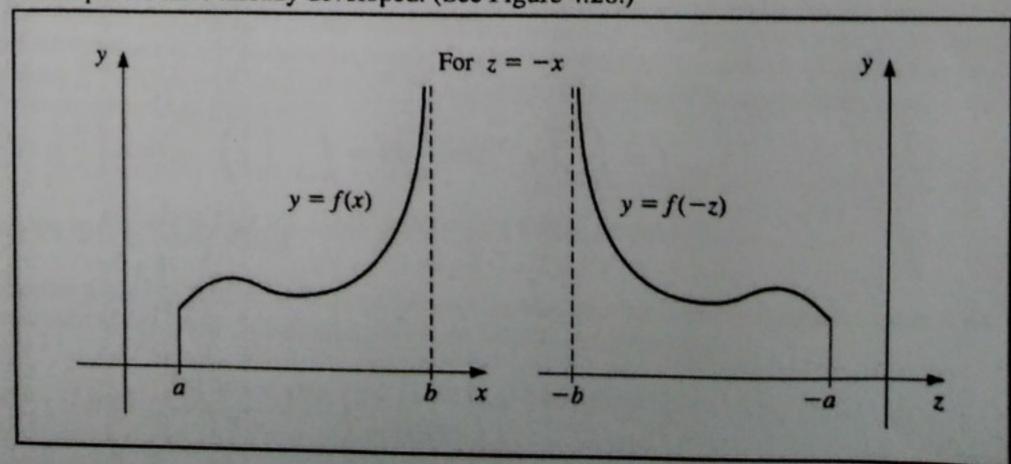
$$z = -x$$
, $dz = -dx$

to change the improper integral into one of the form

$$\int_{a}^{b} f(x) dx = \int_{-b}^{-a} f(-z) dz, \qquad (4.46)$$

which has its singularity at the left endpoint. Then we can apply the left-endpoint singularity technique we have already developed. (See Figure 4.26.)

Figure 4.26



An improper integral with a singularity at c, where a < c < b, is treated as the sum of improper integrals with endpoint singularities since

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Infinite Singularity

The other type of improper integral involves infinite limits of integration. The basic integral of this type has the form

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx,$$

for p > 1. This is converted to an integral with left-endpoint singularity at 0 by making the integration substitution

$$t = x^{-1}$$
, $dt = -x^{-2} dx$, so $dx = -x^2 dt = -t^{-2} dt$.

Then

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \int_{1/a}^{0} -\frac{t^{p}}{t^{2}} dt = \int_{0}^{1/a} \frac{1}{t^{2-p}} dt.$$

In a similar manner, the variable change $t = x^{-1}$ converts the improper integral $\int_a^{\infty} f(x) dx$ into one that has a left-endpoint singularity at zero:

$$\int_{a}^{\infty} f(x) dx = \int_{0}^{1/a} t^{-2} f\left(\frac{1}{t}\right) dt. \tag{4.47}$$

It can now be approximated using a quadrature formula of the type described earlier.

Example 3 Approximate the value of the improper integral

$$I = \int_1^\infty x^{-3/2} \sin \frac{1}{x} \, dx.$$

Solution We first make the variable change $t = x^{-1}$, which converts the infinite singularity into one with a left-endpoint singularity. Then

$$dt = -x^{-2} dx$$
, so $dx = -x^2 dt = -\frac{1}{t^2} dt$,

and

$$I = \int_{x=1}^{x=\infty} x^{-3/2} \sin \frac{1}{x} dx = \int_{t=1}^{t=0} \left(\frac{1}{t}\right)^{-3/2} \sin t \left(-\frac{1}{t^2} dt\right) = \int_0^1 t^{-1/2} \sin t dt.$$

The fourth Taylor polynomial, $P_4(t)$, for $\sin t$ about 0 is

$$P_4(t)=t-\frac{1}{6}t^3,$$

SO

$$G(t) = \begin{cases} \frac{\sin t - t + \frac{1}{6}t^3}{t^{1/2}}, & \text{if } 0 < t \le 1\\ 0, & \text{if } t = 0 \end{cases}$$

is in $C^4[0, 1]$, and we have

$$I = \int_0^1 t^{-1/2} \left(t - \frac{1}{6} t^3 \right) dt + \int_0^1 \frac{\sin t - t + \frac{1}{6} t^3}{t^{1/2}} dt$$

$$= \left[\frac{2}{3} t^{3/2} - \frac{1}{21} t^{7/2} \right]_0^1 + \int_0^1 \frac{\sin t - t + \frac{1}{6} t^3}{t^{1/2}} dt$$

$$= 0.61904761 + \int_0^1 \frac{\sin t - t + \frac{1}{6} t^3}{t^{1/2}} dt.$$

The result from the Composite Simpson's rule with n = 16 for the remaining integral is 0.0014890097. This gives a final approximation of

$$I = 0.0014890097 + 0.61904761 = 0.62053661,$$

which is accurate to within 4.0×10^{-8} .

SE SET 4.9

1. Use the Composite Simpson's rule and the given values of n to approximate the following improper integrals.

a.
$$\int_0^1 x^{-1/4} \sin x \, dx$$
, $n=4$

b.
$$\int_0^1 \frac{e^{2x}}{\sqrt[3]{x^2}} dx$$
, $n=6$

c.
$$\int_{1}^{2} \frac{\ln x}{(x-1)^{1/5}} dx$$
, $n=8$

d.
$$\int_0^1 \frac{\cos 2x}{x^{1/3}} dx$$
, $n=6$

2. Use the Composite Simpson's rule and the given values of n to approximate the following improper integrals.

a.
$$\int_0^1 \frac{e^{-x}}{\sqrt{1-x}} dx$$
, $n=6$

b.
$$\int_0^2 \frac{xe^x}{\sqrt[3]{(x-1)^2}} \, dx, \quad n = 8$$

3. Use the transformation $t = x^{-1}$ and then the Composite Simpson's rule and the given values of n to approximate the following improper integrals.

$$\mathbf{a.} \quad \int_1^\infty \frac{1}{x^2 + 9} \, dx, \quad n = 4$$

b.
$$\int_{1}^{\infty} \frac{1}{1+x^4} dx$$
, $n=4$

c.
$$\int_{1}^{\infty} \frac{\cos x}{x^3} dx, \quad n = 6$$

d.
$$\int_{1}^{\infty} x^{-4} \sin x \, dx, \quad n = 6$$

4. The improper integral $\int_0^\infty f(x) dx$ cannot be converted into an integral with finite limits using the substitution t = 1/x because the limit at zero becomes infinite. The problem is resolved by first writing $\int_0^\infty f(x) dx = \int_0^1 f(x) dx + \int_1^\infty f(x) dx$. Apply this technique to approximate the following improper integrals to within 10^{-6} .

$$\mathbf{a.} \quad \int_0^\infty \frac{1}{1+x^4} \, dx$$

b.
$$\int_0^\infty \frac{1}{(1+x^2)^3} \, dx$$

APPLIED EXERCISES

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If all resistance except gravity is neglected, the escape velocity v is given by

$$v^2 = 2gR \int_0^\infty z^{-2} dz$$
, where $z = \frac{x}{2}$,