function integral=Q5(n) %Simpson %Input data a = 0 ; b = 2^(-1/4); N = 2^n; h = (b-a)/N; x = a:h:b; f = (1-x.^4).^(1/4); %weight=(1,4,2,4,2,...,4,2,4,1) w = zeros(1,N+1); w(2:2:N) = 4; w(3:2:N-1) = 2; w(1) = w(end) = 1; %Sum s = (h/3)*w*f'; integral = 8*(s-2^(-3/2)); end %for n=2:12 %abs(Q5(n)-Q5(n+1)) %= 0.00275356559143081 %= 2.76444174239110e-04 %= 2.16594489517163e-05 %= 1.46901508379926e-06 %= 9.40354665246446e-08 %= 5.91430016072536e-09 %= 3.70233621538318e-10 %= 2.31565877584217e-11 %= 1.43440814781570e-12 %= 8.70414851306123e-14 %= 8.88178419700125e-16 %for n=12, integral =3.70814935460273 %exact= 3.70814935460274 (wolfram: 8*( \int_0^(2^(-1/4)) f(x)dx - 2^(-3/2) ) )