function Q3(n) b = 1.5; g = @(x) b * x + (1-b) * (3 * sin(x) + 0.01); P0 = 1; for i = 1:n P = g(P0); printf("n = %2.0f, P = %16.15f\n", i, P); P0 = P; end end %Result: %b = 1.5 P0 = 1 n = 5, P = -0.005000031250547 %b = 1.8 P0 = 1 n = 67, P = -0.005000031250547 %Actually there are three solutions near -2, 0 ,2 (see the figure).