Numerical Analysis I, Fall 2020 (http://www.math.nthu.edu.tw/~wangwc/)

Homework Assignment for Week 09

1. Section 3.5:

The cubic spline with not-a-knot end condition gives rise to a linear system Ax = bwhere A is an $(n+1) \times (n+1)$ matrix and $x = (c_0, c_1, \dots, c_n)^T$. Eliminating c_0 and c_n results in a new equivalent linear system $\tilde{A}\tilde{x} = \tilde{b}$ where $\tilde{x} = (c_1, \dots, c_{n-1})^T$ and \tilde{A} can be made symmetric. Carry out the details for the case $h_0 = \dots = h_n = h$ and show that \tilde{A} is symmetric and positive definite (hence the original A is non-singular).

Hint: Under not-a-knot end condition, S''(x) is a linear function on $[x_0, x_2]$ and on $[x_{n-2}, x_n]$ (why?). This leads to an linear equation relating c_0, c_1 and c_2 , and one relating c_{n-2}, c_{n-1} and c_n .

2. Section 3.5:

Find the rate of convergence (as Ch^p , where $h = x_j - x_{j-1}$) of cubic spline interpolation numerically with default (not-a-knot) and clamped boundary conditions by evaluating roughly 10 points on each interval $[x_{j-1}, x_j]$.

For example, let (x_j, y_j) , $j = 0, \dots, n$ be data points where $x_j = a + jh$, h = (b - a)/nand $y_j = f(x_j)$. Denote by $x_k^* = a + kh^*$, $h^* = h/10$, $k = 0, \dots, 10n$ the points to be interpolated. Take a = 1, b = 5, f(x) = 1/x, $n = 16, 32, \dots$ and evaluate $\max_k |f(x_k) - S(x_k)|$ to find the order of accuracy p numerically.

Optional: Do the same for natural cubic spline. Key words: csape (advanced version of spline in MATLAB), 'variational'.

3. Section 4.1: Problems 24, 26, 28, 29.

Definition: The linear combination $\sum_{i=-k}^{k} c_i f(x_0 + ih)$ is a *p*th order approximation of $f^{(q)}(x_0)$ if

$$\sum_{i=-k}^{k} c_i f(x_0 + ih) = f^{(q)}(x_0) + O(h^p)$$

4. Section 4.1:

Apply the round-off error instability calculation (end of section 4.1) to second order approximation of $f''(x_0)$. Find the critical h^* that minimizes e(h). Express both h^* and $e(h^*)$ in terms of the machine ε as $O(\varepsilon^p)$ and find p for both h^* and $e(h^*)$.

- 5. Section 4.1: Repeat previous problem for fourth order approximation of $f'(x_0)$.
- 6. Section 4.1, 4.2:

Derive the five-point formula for $f'''(x_0)$ and and $f^{(4)}(x_0)$, respectively using $f(x_0)$, $f(x_0 \pm h)$ and $f(x_0 \pm 2h)$. You can either use the method of undetermined coefficients (combined with Taylor expansion around x_0), or repeat the three-point formula for $f'(x_0)$ and/or $f''(x_0)$ and the identities f''' = (f')'' = (f'')' and f'''' = (f'')'' to get the five-point formulae for $f'''(x_0)$ and and $f^{(4)}(x_0)$.