Numerical Analysis I, Fall 2020 (http://www.math.nthu.edu.tw/~wangwc/)

Homework Assignment for Week 02

Goal: Review basic programming skills. Understand stability, instability and rate of convergence.

- 0. Hint for problem 22, section 1,2: Would ' \approx ' be replaced by '=' if there were no numerical errors in $\sum_{i=0}^{9} (\cdots)$ at all (and sum remains from i = 0 to 9)?
- 1. Section 1.3: Problems 4, 7(c), 10, 15.
- 2. Consider the following recursive relation

$$x_1 = a_1, \quad x_2 = a_2, \quad x_n = \frac{9}{2} x_{n-1} - 2 x_{n-2}$$

- (a) What is the exact solution of x_n with $a_1 = 1/5$, $a_2 = 1/10$? Is it stable (in relative error)? Verify your answer numerically. for n around 40 or larger.
- (b) Do the same for $a_1 = a_2 = 1/5$ and for $a_1 = 1, a_2 = 1/2$, respectively. Explain your observation.
- (c) Which of the above, and the example of page 32-33 of the textbook (note in this example $a_0 = 1$, $a_1 = 1/3$, so $a_2 = 1/9$), is(are) stable when you compute forward to a_n , and then backward to a_1 (using computed a_n and a_{n-1}) recursively? Why?
- 3. Read the details about 'loglog', 'semilogx', 'semilogy' in matlab/octave. Typical convergence behavior, such as $y_n = C_1 n^{-k}$, or $z_n = C_2 \alpha^n$, where *n* denotes the number of iterations and $C_1 > 0$, $C_2 > 0$, k > 0 and $0 < \alpha < 1$ are some constants, will have distinct behaviors when you choose the correct scaling. That is, if you try to plot y_n or z_n versus *n* in one of the special scalings above, you will see a straight line. You can further find the slope of the straight line by plotting together with a known sequence (such as $a_n = 1/n$ versus *n*) and check if the two lines are parallel.
 - (a) Try to analyze and find the rate of convergence of

$$\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{i^2} = \frac{\pi^2}{6}$$

numerically by plotting the results in the correct x- and y- scaling.

(b) Assuming that the leading term of the error is of the form

$$\sum_{i=1}^{n} \frac{1}{i^2} - \text{limit} \approx C n^{-p}$$

An alternative method to estimate the convergence rate (with or without using the information that the limit is $\frac{\pi^2}{6}$) is to estimate p using the numerical values of $\sum_{i=1}^{N}$ with two or three different values of N, say N = 100, 200 and 400. Find p with this method.

- 4. Section 2.1: Problems 14. Write your own code to practice various stopping conditions such as equation (2.1)-(2.3).
- 5. Study the 'while' loop in your programming language (preferably C, C++ or popular ones in the C-family) and write a program that, given any real number a, finds the largest N such that

$$\sum_{i=1}^{N} \frac{1}{i} < a.$$

•