Numerical Analysis I, Fall 2017 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 04

Nov 24, 2017.

- 1. Give an approximation, $f_h''(x)$, of of f''(x) from f(x-h), f(x) and f(x+h). Then derive an error identity of the form $f''(x) f_h''(x) = C_1 f^{(?)}(\xi) h^?$.
- 2. Find $\min_{h>0} e(h) = \min_{h>0} |f''(x) f''_h(x)|$ where $f''_h(x)$ is the three point formula from previous problem. Express the critical value h^* and the minimum $e(h^*)$ in terms of machine ε as $O(\varepsilon^{\alpha})$ and find α for them.
- 3. Derive a fourth order approximation of f'(x) from f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots . Assume $f \in C^{\infty}$ and show that your formula satisfies $|f'(x) f'_h(x)| \le Ch^4$.
- 4. Let $x_0 = a$, $x_1 = \frac{a+b}{2}$, and $x_2 = b$. Write down trapezoidal rule, the midpoint rule and Simpson's rule approximations of $\int_a^b f(x) dx$. Then derive the error formula (equality) for any one of them of your choice.
- 5. Evaluate the degree of precision for all three methods in previous problem. Give definition and show details. You may choose any a, b for your convenience (-1, 1 are recommended).

Numerical Analysis I, Fall 2017 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 04

Nov 24, 2017.

- 1. Give an approximation, $f_h''(x)$, of of f''(x) from f(x-h), f(x) and f(x+h). Then derive an error identity of the form $f''(x) f_h''(x) = C_1 f^{(?)}(\xi) h^?$.
- 2. Find $\min_{h>0} e(h) = \min_{h>0} |f''(x) f''_h(x)|$ where $f''_h(x)$ is the three point formula from previous problem. Express the critical value h^* and the minimum $e(h^*)$ in terms of machine ε as $O(\varepsilon^{\alpha})$ and find α for them.
- 3. Derive a fourth order approximation of f'(x) from f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots . Assume $f \in C^{\infty}$ and show that your formula satisfies $|f'(x) f'_h(x)| \le Ch^4$.
- 4. Let $x_0 = a$, $x_1 = \frac{a+b}{2}$, and $x_2 = b$. Write down trapezoidal rule, the midpoint rule and Simpson's rule approximations of $\int_a^b f(x) dx$. Then derive the error formula (equality) for any one of them of your choice.
- 5. Evaluate the degree of precision for all three methods in previous problem. Give definition and show details. You may choose any a, b for your convenience (-1, 1 are recommended).