
#a. , , , .

#b. ,  the same as above, .

#c. , , , .

#d.  the same as above, , 

.

To see what  looks like, try

or

The answer is

To see what  looks like directly, try

The answer is

HW1

Textbook #19.

(−1 × × (1 + f ))s 2c−1023

s = 0 c = + + = 103421 23 210 f = + + +2−1 2−4 2−7 2−8 x = 3224
s = 1 c, f x = −3224
s = 0 c = + + … + = 102320 21 29 f = + + +2−2 2−4 2−7 2−8 x = 1.32421875
s, c f = + + + +2−2 2−4 2−7 2−8 2−52

x = 1 + + + + +2−2 2−4 2−7 2−8 2−52

Remark.

2−52

= .22204460492503130808472633361816406250000000000000e − 15.2−52

x

x = 1.324218750000000222044604925031308084726333618164062500.



For ,

Textbook #22.

n = 9



For ,

For ,

Method (b) is more accurate. The reason why it produces smaller relative error is mentioned as follows.

Let

W.l.o.g.  is odd. The other case is similar. Then

Note that

That implies 

a
rela

b
relb

=
=
=
=

−1.82710537918871
272.166481338708
0.00695945286364954
0.0328743851197008.

n = 10

a
rela

b
relb

=
=
=
=

0.864039076278661
127.234768898588
0.00683150631297318
0.0138854333375455.

n = 11

a
rela

b
relb

=
=
=
=

−0.359208403479235
54.3112539365463
0.00677489110297060
0.00548299116780556.

err1
err2

A

B

=
=

=

=

absolute error of  by Taylor seriese−5

absolute error of  by Taylor seriese5

+ + + …5n+1

(n + 1)!
5n+3

(n + 3)!
5n+5

(n + 5)!

+ + + …5n+2

(n + 2)!
5n+4

(n + 4)!
5n+6

(n + 6)!

n

err1 = A − B

err2 = A + B.

B ≤ A ⋅ .5
n + 2

(n > 3)

err1 = A (1 − ) ≥ A (1 − ) = A ⋅ ,B
A

A ⋅ 5
n+2

A
n − 3
n + 2



And so,

Hence, we can assume that

Furthermore,

Now consider the relative erros

Therefore, the second one is much smaller than the previous one.

The main reason for the better accuray of Method (b) is not due to "no subtractions" since you can get

almost the same values of Methods (a) (b) even if you apply vpa  function in Matlab. The following results

were derived from digits(24) .

For ,

For ,

err2 = A (1 + ) ≤ A (1 + ) = A ⋅ .B
A

A ⋅ 5
n+2

A
n + 7
n + 2

= ≤ 1,err1
err2

A (1 − )B
A

A (1 + )B
A

= ≥ = 1 − > δ for some δ > 0 if n is large enough.err1
err2

A (1 − )B
A

A (1 + )B
A

n − 3
n + 7

10
n + 7

err1 ≈ err2.

<< .e−5 e5

RelErr of (a) = = = ,∣∣
( −e−5)h e−5

e−5
∣∣ ∣∣

( + err1) −e−5 e−5

e−5
∣∣ ∣∣

err1
e−5

∣∣

RelErr of (b) = = = ≈ .∣∣
−1

(e5)h
e−5

e−5
∣∣ ∣∣

−1
+err2e5 e−5

e−5
∣∣ ∣∣

err2
+ err2e5

∣∣ ∣∣
err2
e5

∣∣

Remark.

n = 9

a
rela

b
relb

=
=
=
=

−1.82710537918871273978268
272.166481338707982599396
.695945286364953569030809e − 2
.328743851197009117883939e − 1.

n = 10



For ,

a
rela

b
relb

=
=
=
=

.86403907627865950312455
127.234768898588016634935
.683150631297318352684775e − 2
.138854333375455777549736e − 1.

n = 11

a
rela

b
relb

=
=
=
=

−.35920840347923699111006
54.3112539365465314674274
.677489110297059508948263e − 2
.548299116780563352524932e − 2.



If , then

If , then

Textbook #28.

< 5dk+1

∣∣
y − f l(y)

y
∣∣ =

=

≤

∣∣
0. … … × − 0. … ×d1 dkdk+1 10n d1 dk 10n

0. … … ×d1 dkdk+1 10n
∣∣

×∣∣
0. …dk+1

0. … …d1 dkdk+1
∣∣ 10−k

× = 0.5 × .0.5
0.1 10−k 10−k+1

≥ 5dk+1

∣∣
y − f l(y)

y
∣∣ =

=

≤

∣∣
0. … … × − 0. … × −d1 dkdk+1 10n d1 dk 10n 10n−k

0. … … ×d1 dkdk+1 10n
∣∣

×∣∣
0. … − 1dk+1

0. … …d1 dkdk+1
∣∣ 10−k

× = 0.5 × .0.5
0.1 10−k 10−k+1



W.l.o.g. .

HW #2.

x, y ≥ 0

≈ ≤ 2 .∣∣
(x + y) − (x(1 + ) + y(1 + ))(1 + )δ1 δ2 δ3

x + y
∣∣ ∣∣

−x( + ) − y( + )δ1 δ3 δ2 δ3
x + y

∣∣ ϵM



 or .

Matlab and Octave have different outputs due to the difference of chopping and rounding.

HW #3.

= = −x1
− +104 −4×108 10−4√

2
2×10−4

+104 −4×108 10−4√
= /x1 10−4 x2

= −1.000000000001000e − 08x1

= .x2
− −104 −4×108 10−4√

2

= −9.99999999999000e + 03 (Octave) = −9.999999999989999e + 03 (Matlab)x2



The purpose of the program is to find a method to compute  correctly.

 is more correct than  due to the reason:

 may delete significant digits.

 with  over the range .

 is a typical example of subtraction of two positive numbers of nearly the same magnitute, resulting loss

of siginificance. There is no general method of avoiding this type of loss of signigicance. It is usually cured

on a case-by-case basis.

One popular cure is to find equivalent formula better suited for numerical computation. In this problem, the

first few terms of Taylor expansion serves as a good approximation of the original formula.

In case of a better alternative (equivalent formula) is not available, one can try to verify with high precision

(meaning: more accurate than double precision) calculations.

HW #4.

− cos x − xex

f2 f1

= − (cos x + x)f1 ex

= + + O( )f2 x2 x3

6 x5 ≈x5 10−40 |x| ≤ 10−8

Remark.

f1
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