Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 06

Jan 05, 2010.

- 1. Let A, B be two real $n \times n$ matrices. Show that $||AB|| \leq ||A|| ||B||$. Here the matrix norm is not specified (it could be generated from L^2 , L^{∞} or other norms in \mathbb{R}^n). You can prove it for one particular norm, or give a proof that works for any norm.
- 2. Show that $\operatorname{cond}(A) \ge 1$ for any A.
- 3. Describe Jacobi iteration and Gauss-Siedel iteration.
- 4. Let $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & 1 & 3 \end{pmatrix}$. Give a convergent iteration method for solving Ax = b. Explain why it converges

5. Let
$$B = \begin{pmatrix} 0.5 & 1 & 0 \\ 1 & 0.5 & 0 \\ -1 & 1 & 0.5 \end{pmatrix}$$
. Give a convergent iteration method for solving $Bx = b$.
Explain why it converges.

why it converge

Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 06

Jan 05, 2010.

- 1. Let A, B be two real $n \times n$ matrices. Show that $||AB|| \leq ||A|| ||B||$. Here the matrix norm is not specified (it could be generated from L^2 , L^{∞} or other norms in \mathbb{R}^n). You can prove it for one particular norm, or give a proof that works for any norm.
- 2. Show that $\operatorname{cond}(A) \ge 1$ for any A.
- 3. Describe Jacobi iteration and Gauss-Siedel iteration.

4. Let $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & 1 & 3 \end{pmatrix}$. Give a convergent iteration method for solving Ax = b. Explain why it converges.

5. Let
$$B = \begin{pmatrix} 0.5 & 1 & 0 \\ 1 & 0.5 & 0 \\ -1 & 1 & 0.5 \end{pmatrix}$$
. Give a convergent iteration method for solving $Bx = b$.
Explain why it converges.