Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 01

Oct 02, 2009.

- 1. Derive the integral form of Taylor's remainder term for n = 2, assuming the function under concern is in C^{∞} .
- 2. Write down Taylor's polynomial $p_2(x, y, z)$ for f(x, y, z) around the origin (0, 0, 0), assuming $f \in C^{\infty}(\mathbb{R}^3)$. That is, $f(x, y, z) = p_2(x, y, z) + R_2(x, y, z)$, degree of $p_2 = 2$. Write down p_2 (need NOT give R_2).
- 3. How many terms of Taylor polynomial are needed to approximate e^x within 10^{-6} on [-1, 1]? Explain.
- 4. Evaluate

$$p(x) = 1 + \frac{x^4}{4!} + \frac{x^8}{8!} + \frac{x^{12}}{12!} + \frac{x^{16}}{16!}$$

as efficient as possible. You may give your answer either in the form of a loop, or any other expression as long as it is clear enough.

How many multiplications are needed?

Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 01

Oct 02, 2009.

- 1. Derive the integral form of Taylor's remainder term for n = 2, assuming the function under concern is in C^{∞} .
- 2. Write down Taylor's polynomial $p_2(x, y, z)$ for f(x, y, z) around the origin (0, 0, 0), assuming $f \in C^{\infty}(\mathbb{R}^3)$. That is, $f(x, y, z) = p_2(x, y, z) + R_2(x, y, z)$, degree of $p_2 = 2$. Write down p_2 (need NOT give R_2).
- 3. How many terms of Taylor polynomial are needed to approximate e^x within 10^{-6} on [-1, 1]? Explain.
- 4. Evaluate

$$p(x) = 1 + \frac{x^4}{4!} + \frac{x^8}{8!} + \frac{x^{12}}{12!} + \frac{x^{16}}{16!}$$

as efficient as possible. You may give your answer either in the form of a loop, or any other expression as long as it is clear enough.

How many multiplications are needed?