Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Midterm 02

Dec 04, 2009.

- 1. Give the error formula of polynomial interpolation of the function $f(x) = x^{n+1}$ on $0 = x_0 < x_1, \dots < x_n = 1$. What is the smallest possible error $\max_{x \in [0,1]} |x^{n+1} p_n(x)|$ by varying the nodes $0 = x_0 < x_1, \dots < x_n = 1$?
- 2. Given the knots x_0, \dots, x_n , what would be the matching conditions on x_1, \dots, x_{n-1} for a piecewise quadratic spline? How many boundary conditions are needed to uniquely determine the spline function? Explain.
- 3. Does

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \sec(\frac{i\pi}{2n})$$

converge? If so, find the limit. If not, find the leading term.

- 4. Find the least square approximation of x^3 on span $\{1, x, x^2\}$ over the interval [0, 1].
- 5. Derive the quadrature rule obtained from applying Richardson extrapolation to the Trapezoidal rule.
- 6. Write down the equations satisfied by the nodes and weights for the weighted Gaussian quadrature formulas for $\int_0^1 \sqrt{x} f(x) dx$ with n = 2. Need NOT solve for the nodes and weights.
- 7. Given $f(x_j)$, $j = 0, 1, \dots, N$ and $x_0 = 0$, $x_j = jh, \dots, x_N = 1$, where h = 1/N. Write down an $O(h^2)$ approximation of f'(0) and f''(0) using method of undetermined coefficients.
- 8. (Programming)

Use Simpson rule to find the numerical value of $\int_0^1 \frac{1}{1+\sin(x)} dx$. Use Richardson extrapolation to analyze your numerical results and find out how many grid points are needed to give 7 correct digits. Then write down 7 correct digits in the answer sheet as well. Attach relevant functions at the end of the main program and name it u916xxxx_pr8.m.

9. (Programming)

Interpolate $g(x) = \frac{1}{1 + (x - 5)^2}$ on [0, 5] with the nodes $x_j = 5(\frac{j}{N})^p$, $j = 0, 1, \dots, N$. Then report the maximum error on 0: 0.001: 5. Do this for N = 10 and N = 20 and p = 1, 2 respectively. Write down these four errors on the answer sheet. Attach relevant functions at the end of the main program and name it u916xxxx_pr9.m.