Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/~wangwc/)

Midterm 1

Oct 27, 2009.

Downlowd relevant program from http://www.math.uiowa.edu/ftp/atkinson/ENA_Materials.

- 1. How many terms of Taylor polynomial are needed to approximate e^x within 10^{-6} on [-1, 1]? Explain.
- 2. Write down Taylor's polynomial $p_3(x, y)$ for f(x, y) around the origin (0, 0), assuming $f \in C^{\infty}(\mathbb{R}^2)$. That is, $f(x, y) = p_3(x, y) + R_3(x, y)$, degree of $p_3 = 3$. Write down p_3 (need NOT give R_3).
- 3. Solve for $x^2 1900x + 1 = 0$ to 15 correct digits. Explain your method, implement it in matlab and then copy your computed result carefully. Every digit counts.
- 4. How many "bits" does it take to store a floating point number in the range

$$\pm 1.d_1d_2\cdots d_s \times 2^e$$

with s = 23, $d_j \in \{0, 1\}$, $-126 \le e \le 127$? What is the largest possible rounding error caused by floating number representation in this case? In other words, what it the largest possible number of $\left|\frac{x-fl(x)}{x}\right|$, where x is a real number lying in the representable range specified above and fl(x) is the floating number representation of x obtained by "rounding"? Explain.

- 5. Suppose that a floating point algorithm gives rises to $\left|\frac{x-fl(x)}{x}\right| \leq \epsilon$, give an estimate of the relative error of evaluating 2^{xy} with x = 0.9, y = 1.9.
- 6. Give the formula of Newton's method for solving $x^2 2x + 1 = 0$. Find the order of convergence and prove your answer.
- 7. Given the data set $\{x_0, y_0\} = (0, 2), \{x_1, y_1\} = (1, 1), \{x_2, y_2\} = (2, 3), \{x_3, y_3\} = (3, 0),$ Write down the Lagrangian polynomials $L_i(x), i = 0, 1, 2, 3$ and the interpolating polynomial in terms of L_i and y_i . Need NOT simplify. Then prove that $L_0(x) + L_1(x) + L_2(x) + L_3(x)$ is a constant function.
- 8. (Analysis and Programming)

Prepare a matlab program for evaluating

$$g(x) = \int_0^x e^{-t^4} dt$$

Find its Taylor polynomial so that the error is bounded by 10^{-9} for $|x| \leq 1$. Let your main program plot the graph of g(x) on [-1, 1] and show g(1/2) on screen. Attach relevant functions at the end of the main program and name it u916xxxx_pr8.m.

9. (Analysis and Programming) Use fixed point iteration to find the solution to

$$x = -2\sin x + 0.1$$

If your fixed point method does not converge, you can use Newton's method (half credit) or bisection (1/4 credit). Attach relevant functions at the end of the main program and name it u916xxxx_pr9.m.

Create a directory on your desktop called u916xxxx and put your source code in it.