
Refer to the solutions in the textbook to prove the existence and uniqueness of fixed point by Thm.2.3.
Run the following code. Then the numerical result shows that the approximation solution is
3.626995622438735 with 0.010000 accuracy after 3 iterations.

%fixed	point	iteration
p0	=	pi;	TOL	=	10^(-2);	N0	=	100;
g	=	@(x)	pi	+	0.5*sin(x/2);
i	=	1;
while	(i	<=	N0)
				p	=	g(p0);
				if	(abs(p-p0)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...
									after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

For , Cor.2.5 implies that

and

HW3

Textbook §2.2 #9.

= πp0

| − p| ≤ π < 0.01 ⇒ n > 4.1477... ⇒ n ≥ 5pn ()1
4

n

| − p| ≤ < 0.01 ⇒ n > 3.0294... ⇒ n ≥ 4.pn
4
3 ()1

4

n 1
2

Let . Then . Note that

.
.

By Thm.2.4, for any , the sequence converges to the unique fixed point
.

For , Cor.2.5 implies that

and

Run the following code. Then the numerical result shows that the approximation solution is
2.554192102747867 with 0.000010 accuracy after 52 iterations.

%fixed	point	iteration
p0	=	2.5;	TOL	=	10^(-5);	N0	=	100;
g	=	@(x)	2	+	sin(x);
i	=	1;
while	(i	<=	N0)
				p	=	g(p0);
				if	(abs(p-p0)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

Textbook §2.2 #14a.
g(x) = 2 + sin x g ∈ C[2, 3]

x ∈ [2, 3] ⊂ [π/2, π] ⇒ 0 ≤ sin x ≤ 1 ⇒ g([2, 3]) ⊂ [2, 3]
| (x)| = | cos x| ≤ | cos 3| < 1, ∀ x ∈ (2, 3)g′

∈ [2, 3]p0 = g()pn pn−1
p ∈ [2, 3]

= 2.5p0

| − p| ≤ max{ − a, b − } = | cos 3 ⋅ 0.5 <pn kn p0 p0 |n 10−5

⇒ n > 1075.747628... ⇒ n ≥ 1076

| − p| ≤ | − | <pn
| cos 3|n

1 − | cos 3|
p1 p0 10−5

⇒ n > 1371.990509... ⇒ n ≥ 1372.

.
Any closed subinterval of containing suffices. . To
prove the convergence, first note that . Then note that

 is increasing on and decreasing on . Furthermore,

Therefore, .
.

Textbook §2.2 #20.
p = = li g() = 2p − A ⇒ p =limn→∞ pn mn→∞ pn−1 p2 1

A
[a, b] (,)1

2A
3

2A
1
A i. e. < a ≤ ≤ b <1

2A
1
A

3
2A

g ∈ C[a, b]

g [a,]1
A [, b]1

A

a ≤ ⇒ g(a) ≥ a1
A

b ≥ ⇒ g(b) ≤ b1
A

g() = is the maximum.1
A

1
A

g([a, b]) ⊂ [a, b]
| (x)| = 2A| − x| ≤ 2A max{ − a, b − } < 2A = 1, ∀ x ∈ (a, b)g′ 1

A
1
A

1
A

1
2A

Let and . Consider

To accelerate the convergence, we choose such that

Reasonable guesses for include , , and . Both of them work well in this
example.

For , the approximation solution is 2.554196096669195 with 0.000010 accuracy after 3
iterations.

For , the approximation solution is 2.554195880784590 with 0.000010 accuracy after 4
iterations.

For , the approximation solution is 2.554196074187307 with 0.000010 accuracy after 5
iterations.

HW #2.
g(x) = 2 + sin x (x) = αx + (1 − α)g(x)ḡ

= () = α + (1 − α)g()pn+1 ḡ pn pn pn

= () = α + (1 − α)g().p∗ ḡ p∗ p∗ p∗

− = [α + (1 − α) ()](−) for some between and .⇒
MVT

pn+1 p∗ g′ ξn pn p∗ ξn pn p∗

α

α + (1 − α) () = 0g′ ξn

⇒ α = .
()g′ ξn

() − 1g′ ξn

()g′ ξn (2.5)g′ g(3)−g(2)
3−2

(2)+ (3)g′ g′

2

() = (2.5)g′ ξn g′

() =g′ ξn
g(3)−g(2)

3−2

() =g′ ξn
(2)+ (3)g′ g′

2

%generalized	fixed	point	iteration
p0	=	2.5;	TOL	=	10^(-5);	N0	=	100;
k	=	cos(2.5);
al	=	k	/	(k-1);
g	=	@(x)	al*x	+	(1-al)*(2	+	sin(x));
i	=	1;
while	(i	<=	N0)
				p	=	g(p0);
				if	(abs(p-p0)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

For , , the numerical result shows that the approximation solution is -0.040658499043342
with 0.000001 accuracy after 17 iterations.

For , , the numerical result shows that the approximation solution is 0.962398384238757
with 0.000001 accuracy after 9 iterations.

%method	of	false	point
p0	=	-1;	p1	=	0;	TOL	=	10^(-6);	N0	=	100;
%p0	=	0;	p1	=	1;	TOL	=	10^(-6);	N0	=	100;
f	=	@(x)	230*x^4	+	18	*x^3	+	9*x^2	-	221*x	-	9;
i	=	2;
q0	=	f(p0);
q1	=	f(p1);
while	(i	<=	N0)
				p	=	p1	-	q1*(p1-p0)/(q1-q0);
				if	(abs(p-p1)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				q	=	f(p);
				if	(q*q1	<	0)
								p0	=	p1;
								q0	=	q1;
				end
				p1	=	p;
				q1	=	q;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

Textbook §2.3 #13a.
= −1p0 = 0p1

= 0p0 = 1p1

For , , the numerical result shows that the approximation solution is -0.040659288315725
with 0.000001 accuracy after 5 iterations.

For , , the numerical result shows that the approximation solution is -0.040659288315572
with 0.000001 accuracy after 12 iterations.

%secant	method
p0	=	-1;	p1	=	0;	TOL	=	10^(-6);	N0	=	100;
%p0	=	0;	p1	=	1;	TOL	=	10^(-6);	N0	=	100;
f	=	@(x)	230*x^4	+	18	*x^3	+	9*x^2	-	221*x	-	9;
i	=	2;
q0	=	f(p0);
q1	=	f(p1);
while	(i	<=	N0)
				p	=	p1	-	q1*(p1-p0)/(q1-q0);
				if	(abs(p-p1)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p1;
				q0	=	q1;
				p1	=	p;
				q1	=	f(p);
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

Textbook §2.3 #13b.
= −1p0 = 0p1

= 0p0 = 1p1

Plot the graph of for an observation.

Test some initial points for more observations.

For , the numerical result shows that the approximation solution is 0.450656747890593 with
0.000010 accuracy after 3 iterations.

For , the numerical result shows that the approximation solution is 1.744738053368350 with
0.000010 accuracy after 3 iterations.

Textbook §2.3 #17c.
f

= 0.5p0

= 1.5p0

%Newton's	method
p0	=	0.5;	TOL	=	10^(-5);	N0	=	100;
%p0	=	1.5;	TOL	=	10^(-5);	N0	=	100;
f	=	@(x)	log(x^2+1)	-	exp(0.4*x)	*	cos(pi*x);
df	=	@(x)	2*x/(1+x^2)	-	exp(0.4*x)	*	(0.4*cos(pi*x)-pi*sin(pi*x));
i	=	1;
while	(i	<=	N0)
				p	=	p0	-	f(p0)/df(p0);
				if	(abs(p-p0)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

Finally, we conclude that is a reasonable initial approximation to find the th smallest positive zero.n − 1
2 n

For , the numerical result shows that the approximation solution is 1.895488418971447 with
0.000010 accuracy after 15 iterations.

For , the numerical result shows that the approximation solution is 1.895489001382098 with
0.000010 accuracy after 19 iterations.

For , the numerical result shows that the method failed after iterations, .

%Newton's	method
p0	=	pi/2;	TOL	=	10^(-5);	N0	=	100;
%p0	=	5*pi;	TOL	=	10^(-5);	N0	=	100;
%p0	=	10*pi;	TOL	=	10^(-5);	N0	=	100;
f	=	@(x)	0.5	+	0.25*x^2	-	x*sin(x)	-	0.5*cos(2*x);
df	=	@(x)	0.5*x	-	sin(x)	-	x*cos(x)	+	sin(2*x);
i	=	1;
while	(i	<=	N0)
				p	=	p0	-	f(p0)/df(p0);
				if	(abs(p-p0)	<	TOL)
								fprintf('The	approximation	solution	is	%.15f	with	%f	accuracy	...	
								after	%d	iterations.\n',	p,	TOL,	i);
								return;
				end
				i	+=	1;
				p0	=	p;
end
printf('The	method	failed	after	N0	iterations,	N0	=	%d\n',	N0);
return;

end

The results do not indicate the fast convergence usually associated with Newton’s method.

Textbook §2.3 #18.
= π/2p0

= 5πp0

= 10πp0 N0 = 100N0

