1. With $E_1 = (0.25, 0.75)$, $E_2 = (0, 1)$, $E_3 = (0.5, 0.5)$, and $E_4 = (0, 0.5)$, the basis functions are

$$\phi_1(x,y) = \begin{cases} 4x & \text{on } T_1 \\ -2 + 4y & \text{on } T_2, \end{cases}$$

$$\phi_2(x,y) = \begin{cases} -1 - 2x + 2y & \text{on } T_1 \\ 0 & \text{on } T_2, \end{cases}$$

$$\phi_3(x,y) = \begin{cases} 0 & \text{on } T_1 \\ 1 + 2x - 2y & \text{on } T_2, \end{cases}$$

$$\phi_4(x,y) = \begin{cases} 2 - 2x - 2y & \text{on } T_1 \\ 2 - 2x - 2y & \text{on } T_2, \end{cases}$$

and $\gamma_1 = 0.323825$, $\gamma_2 = 0$, $\gamma_3 = 1.0000$, and $\gamma_4 = 0$.

2. With $E_1 = (0.25, 0.75)$, $E_2 = (0,1)$, $E_3 = (0.5, 0.5)$, $E_4 = (0,0.5)$, $E_5 = (0,0.75)$, and $E_6 = (0.25, 0.5)$, the following results are obtained:

i	j	$a_j^{(i)}$	$b_j^{(i)}$	$c_j^{(i)}$	node
1	1	0	4	0	1
1	2	-3	0	4	2
1	3	4	-4	-4	5
2	1	-2	0	4	1
2	2	-1	4	0	3
2	3	4	-4	-4	6
3	1	0	4	0	1
3	2	3	0	-4	4
3	3	-2	-4	4	5
4	1	-2	0	4	1
4	2	1	-4	0	4
4	3	2	4	-4	6

So $\gamma_1 = 0.3238255$, $\gamma_2 = 0$, $\gamma_3 = 1.0$, $\gamma_4 = 0$, $\gamma_5 = 0$, and $\gamma_6 = 0.5$.

3. The Finite-Element Algorithm with K = 8, N = 8, M = 32, n = 9, m = 25, and NL = 0 gives the following results, where the labeling is as shown in the diagram.

With the labeling shown in the figure:

$$\begin{split} \gamma_1 &= 0.511023, \, \gamma_2 = 0.720476, \, \gamma_3 = 0.507899, \, \gamma_4 = 0.720476, \\ \gamma_5 &= 1.01885, \, \gamma_6 = 0.720476, \, \gamma_7 = 0.507896, \, \gamma_8 = 0.720476, \\ \gamma_9 &= 0.511023 \ \text{ and } \ \gamma_i = 0, \quad \text{for } 10 \leq i \leq 25 \\ u(0.125, 0.125) &\approx 0.614187, \, u(0.125, 0.25) \approx 0.690343, \, u(0.25, 0.125) \approx 0.690343, \, \text{and} \, \, u(0.25, 0.25) \approx 0.720476 \end{split}$$

4. The Finite-Element Algorithm with K = 8, N = 22, M = 32, n = 25, m = 25, and NL = 16 gives the results shown below, where the labeling is as shown in the figure for Exercise 3:

```
\begin{array}{l} \gamma_1=-0.489695,\,\gamma_2=0.0163250,\,\gamma_3=0.524243,\,\gamma_4=0.0163250,\\ \gamma_5=0.00868518,\,\gamma_6=0.0163250,\,\gamma_7=0.524243,\,\gamma_8=0.0163250,\\ \gamma_9=-0.489695,\,\gamma_{10}=-1.06913,\,\gamma_{11}=-0.684308,\,\gamma_{12}=0.0581583,\\ \gamma_{13}=0.752871,\,\gamma_{14}=0.962801,\,\gamma_{15}=-0.684308,\,\gamma_{16}=0.752871,\\ \gamma_{17}=0.0581583,\,\gamma_{18}=0.0581583,\,\gamma_{19}=0.752871,\,\gamma_{20}=-0.684308,\\ \gamma_{21}=0.962801,\,\gamma_{22}=0.752871,\,\gamma_{23}=0.0581583,\,\gamma_{24}=-0.684308,\\ \text{and }\gamma_{25}=-1.06913.\\ u(0.125,0.125)\approx0.270284,\,u(0.125,0.25)\approx-0.238595,\,u(0.25,0.125)\approx-0.238595,\,\text{ and }u(0.25,0.25)\approx0.0163250 \end{array}
```

5. The Finite-Element Algorithm with K = 0, N = 12, M = 32, n = 20, m = 27, and NL = 14 gives the following results, where the labeling is as shown in the diagram.

 $u(1,0) \approx 22.92824, \ u(4,0) \approx 22.84663, \ \ {\rm and} \ \ u\left(\frac{5}{2},\frac{\sqrt{3}}{2}\right) \approx 18.85895.$