- 1. Broyden's method gives the following:
 - (a) $\mathbf{x}^{(2)} = (0.4777920, 1.927557)^t$
 - (b) $\mathbf{x}^{(2)} = (-0.3250070, -0.1386967)^t$
 - (c) $\mathbf{x}^{(2)} = (0.5229372, 0.8243491)^t$
 - (d) $\mathbf{x}^{(2)} = (1.779500, 1.743396)^t$
- 2. Broyden's method gives the following:
 - (a) $\mathbf{x}^{(2)} = (0.50023123, -1.08029909, -0.52382394)^t$.
 - (b) $\mathbf{x}^{(2)} = (-67.005828, 38.314935, 31.690893)^t$.
 - (c) $\mathbf{x}^{(2)} = (-1.40360242, -1.67987524, 0.45816509)^t$
 - (d) $\mathbf{x}^{(2)} = (0.49840580, -0.19984209, -0.52851353)^t$
- 3. Broyden's method gives the following:
 - (a) With $\mathbf{x}^{(0)} = (0,0)^t$, we have $\mathbf{x}^{(8)} = (0.5,2)^t$.
 - (b) With $\mathbf{x}^{(0)} = (0,0)^t$, we have $\mathbf{x}^{(9)} = (-0.3736982, 0.05626649)^t$.
 - (c) With $\mathbf{x}^{(0)} = (1, 1)^t$, we have $\mathbf{x}^{(9)} = (0.5, 0.8660254)^t$.
 - (d) With $\mathbf{x}^{(0)} = (2, 2)^t$, we have $\mathbf{x}^{(8)} = (1.772454, 1.772454)^t$.
- 4. Broyden's method gives the following:
 - (a) With $\mathbf{x}^{(0)} = (1, 1, 1)^t$, we have $\mathbf{x}^{(18)} = (0.49999953, 0.00319904, -0.52351886)^t$.
 - (b) With $\mathbf{x}^{(0)} = (2, 1, -1)^t$, we have $\mathbf{x}^{(10)} = (6.000000000, 1.000000000, -4.000000000)^t$.
 - (c) With $\mathbf{x}^{(0)} = (-1, -2, 1)^t$, we have $\mathbf{x}^{(9)} = (-1.456043, -1.664231, 0.4224934)^t$.
 - (d) With $\mathbf{x}^{(0)} = (0,0,0)^t$, we have $\mathbf{x}^{(5)} = (0.4981447, -0.1996059, -0.5288260)^t$.
- 5. Broyden's method gives the following:
 - (a) With $\mathbf{x}^{(0)} = (2.5, 4)^t$, we have $\mathbf{x}^{(3)} = (2.546947, 3.984998)^t$
 - (b) With $\mathbf{x}^{(0)} = (0.11, 0.27)^t$, we have $\mathbf{x}^{(4)} = (0.1212419, 0.2711052)^t$.
 - (c) With $\mathbf{x}^{(0)} = (1, 1, 1)^t$, we have $\mathbf{x}^{(3)} = (1.036401, 1.085707, 0.9311914)^t$.
 - (d) With $\mathbf{x}^{(0)} = (1, -1, 1)^t$, we have $\mathbf{x}^{(8)} = (0.9, -1, 0.5)^t$; and with $\mathbf{x}^{(0)} = (1, 1, -1)^t$, we have $\mathbf{x}^{(8)} = (0.5, 1, -0.5)^t$.

6. (a) Suppose $(x_1, x_2, x_3, x_4)^t$ is a solution to

$$4x_1 - x_2 + x_3 = x_1x_4,$$

$$-x_1 + 3x_2 - 2x_3 = x_2x_4,$$

$$x_1 - 2x_2 + 3x_3 = x_3x_4,$$

$$x_1^2 + x_2^2 + x_3^2 = 1.$$

Multiplying the first three equations by -1 and factoring gives

$$4(-x_1) - (-x_2) + (-x_3) = (-x_1)x_4,$$

$$-(-x_1) + 3(-x_2) - 2(-x_3) = (-x_2)x_4,$$

$$(-x_1) - 2(-x_2) + 3(-x_3) = (-x_3)x_4,$$

$$(-x_1)^2 + (-x_2)^2 + (-x_3)^2 = 1.$$

Thus, $(-x_1, -x_2, -x_3, -x_4)^t$ is also a solution.

- (b) Using $\mathbf{x}^{(0)} = (1, 1, 1, 1)^t$ gives $\mathbf{x}^{(6)} = (0, 0.70710678, 0.70710678, 1)^t$. Using $\mathbf{x}^{(0)} = (1, 0, 0, 0)^t$ gives $\mathbf{x}^{(15)} = (0.81649659, 0.40824821, -0.40824837, 3)^t$. Using $\mathbf{x}^{(0)} = (1, -1, 1, -1)^t$ gives $\mathbf{x}^{(11)} = (0.57735034, -0.57735023, 0.57735025, 6)^t$. The other three solutions follow easily from part (a).
- 7. With $\mathbf{x}^{(0)} = (1, 1 1)^t$, Broyden's method gives $\mathbf{x}^{(56)} = (0.5000591, 0.01057235, -0.5224818)^t$.
- 8. If $\mathbf{z}^t \mathbf{y} = 0$, then $\mathbf{z} = \mathbf{z}_1 + \mathbf{z}_2$, where $\mathbf{z}_1 = \mathbf{0}$ and $\mathbf{z}_2 = \mathbf{z}$. Otherwise, let

$$\mathbf{z}_1 = \frac{\mathbf{y}^t \mathbf{z}}{\|\mathbf{y}\|_2^2} \mathbf{y}$$

be parallel to y and let $z_2 = z - z_1$. Then

$$\mathbf{z}_{2}^{t}\mathbf{y} = \mathbf{z}^{t}\mathbf{y} - \mathbf{z}_{1}^{t}\mathbf{y} = \mathbf{z}^{t}\mathbf{y} - \left[\frac{\mathbf{y}^{t}\mathbf{z}}{\mathbf{y}^{t}\mathbf{y}}\mathbf{y}\right]^{t}\mathbf{y} = \mathbf{z}^{t}\mathbf{y} - \frac{\mathbf{z}^{t}\mathbf{y}}{\mathbf{y}^{t}\mathbf{y}}\mathbf{y}^{t}\mathbf{y} = 0.$$

9. Let λ be an eigenvalue of $M = (I + \mathbf{u}\mathbf{v}^t)$ with eigenvector $\mathbf{x} \neq \mathbf{0}$. Then

$$\lambda \mathbf{x} = M \mathbf{x} = (I + \mathbf{u}\mathbf{v}^t) \mathbf{x} = \mathbf{x} + (\mathbf{v}^t \mathbf{x}) \mathbf{u}.$$

Thus, $(\lambda - 1)\mathbf{x} = (\mathbf{v}^t\mathbf{x})\mathbf{u}$. If $\lambda = 1$, then $\mathbf{v}^t\mathbf{x} = 0$. So $\lambda = 1$ is an eigenvalue of M with multiplicity n - 1 and eigenvectors $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n-1)}$ where $\mathbf{v}^t\mathbf{x}^{(j)} = 0$, for $j = 1, \dots, n-1$.

Assuming $\lambda \neq 1$ implies x and u are parallel, so for some number α , we have $x = \alpha u$. Then

$$(\lambda - 1)\alpha \mathbf{u} = (\mathbf{v}^t(\alpha \mathbf{u})) \mathbf{u}$$
 and $\alpha(\lambda - 1)\mathbf{u} = \alpha(\mathbf{v}^t \mathbf{u}) \mathbf{u}$,

which implies that

$$\lambda - 1 = \mathbf{v}^t \mathbf{u}$$
 or $\lambda = 1 + \mathbf{v}^t \mathbf{u}$.

Hence, M has eigenvalues λ_i , $1 \le i \le n$ where $\lambda_i = 1$, for i = 1, ..., n-1 and $\lambda_n = 1 + \mathbf{v}^t \mathbf{u}$. Since $\det M = \prod_{i=1}^n \lambda_i$, we have $\det M = 1 + \mathbf{v}^t \mathbf{u}$.

- 10. (a) Since A^{-1} exists we can write $\det (A + \mathbf{x}\mathbf{y}^t) = \det (A + AA^{-1}\mathbf{x}\mathbf{y}^t) = \det A \left(I + A^{-1}\mathbf{x}\mathbf{y}^t\right) = \det A \det \left(I + A^{-1}\mathbf{x}\mathbf{y}^t\right).$ But A^{-1} exists so $\det A \neq 0$. By Exercise 9, $\det \left(I + A^{-1}\mathbf{x}\mathbf{y}^t\right) = 1 + \mathbf{y}^t A^{-1}\mathbf{x}$. So $(A + \mathbf{x}\mathbf{y}^t)^{-1}$ exists if and only if $\mathbf{y}^t A^{-1}\mathbf{x} \neq -1$.
 - (b) Assume $y^t A^{-1}x \neq -1$ so that $(A + xy^t)^{-1}$ exists. Therefore,

$$\begin{split} \left[A^{-1} - \frac{A^{-1} \mathbf{x} \mathbf{y}^t A^{-1}}{1 + \mathbf{y}^t A^{-1} \mathbf{x}}\right] \left(A + \mathbf{x} \mathbf{y}^t\right) = & A^{-1} A - \frac{A^{-1} \mathbf{x} \mathbf{y}^t A^{-1} A}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} + A^{-1} \mathbf{x} \mathbf{y}^t - \frac{A^{-1} \mathbf{x} \mathbf{y}^t A^{-1} \mathbf{x} \mathbf{y}^t}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} \\ = & I - \frac{A^{-1} \mathbf{x} \mathbf{y}^t}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} + A^{-1} \mathbf{x} \mathbf{y}^t - \frac{A^{-1} \mathbf{x} \mathbf{y}^t A^{-1} \mathbf{x} \mathbf{y}^t}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} \\ = & I - \frac{A^{-1} \mathbf{x} \mathbf{y}^t - A^{-1} \mathbf{x} \mathbf{y}^t - \mathbf{y}^t A^{-1} \mathbf{x} A^{-1} \mathbf{x} \mathbf{y}^t + A^{-1} \mathbf{x} \mathbf{y}^t}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} \\ = & I + \frac{\mathbf{y}^t A^{-1} \mathbf{x} A^{-1} \mathbf{x} \mathbf{y}^t - \mathbf{y}^t A^{-1} \mathbf{x} \left(A^{-1} \mathbf{x} \mathbf{y}^t\right)}{1 + \mathbf{y}^t A^{-1} \mathbf{x}} = I. \end{split}$$

11. With $\mathbf{x}^{(0)} = (0.75, 1.25)^t$, we have $\mathbf{x}^{(4)} = (0.7501948, 1.184712)^t$. Thus, a = 0.7501948, b = 1.184712, and the error is 19.796.