10.1

[—

. Use Theorem 10.5

k-

t
One example is F(zq,z2) = (1, (71 — 11}2 T I%) :

¥

Use Theorem 10.5 for each of the partial derivatives.

4. The solutions are near (—1.5,10.5) and (2, 11).

(a) The graphs are shown in the figure below.

4 X2

—x )+ 20= 18

(b) Use
t
Gy(x) = (—0.5 + /3y —17.75,6 + /25 — (71 — 1)2)

and

t
Ga(x) = (—0.5 — V225 —T7.75,6 + /25 — (21 — 1)2) .

For Gi(x) with x(9 = (2,11)}, we have x(9 = (1.5469466, 10.969994), and for G3(x)
with x(®) = (—1.5,10.5), we have x(34) = (—2.000003, 9.999996 ).
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10.1

6.

7.

(a) Continuity properties can be easily shown. Moreover,

8 z34zi+8
— <1727 7 95
=" 10 -
and ,
8 175 + 11 + 8
—_—— 1. 5
TR 0 < 1.2875,
so G(x) € D, whenever x € D.
Further,
dg1 2z dg1(x) 3 091 213 dga(x) 3
_— = — S0 —_, T = S0 = —
9z, 10 oz, | =10° Bz 10 bz; | = 10°
2 - -
Og2 _ T3+ 1 w© Oga(x) < 3.23‘ and g2 _ 2x1T9 “ Oga(x) < 4_.3
bz, 10 Bz, 10 dz; 10 s 10
Since
dgi(x) _ 09
‘3_.17_1 = 0.45 = T,

for i,7 = 1,2, all hypothesis of Theorem 10.6 have been satisfied, and G has a unique
fixed point in D.

(b) With x(® = (0,0)* and tolerance 10~°, we have x!1* = (0.9999973,0.9999973)".
(c) With x(? = (0,0)! and tolerance 105, we have x(11) = (0.9999984, 0.9999991)¢.

(a) G = (z2/V/5,0.25(sinz; + cos.rg))E and D = {(z1,22) |0 < 1,21 <1},
(b) With x(© = (4,

1. 1)" we have x(19 = (0.1212440, 0.2711065)".
(¢) With x(?) = (%,

(3] [

]E, we have x(3) = (0.1212421,0.2711052)%.

(a) With x(® = (1,1,1)%, we have x(® = (5.0000000, 0.0000000, —0.5235988)".

(b) With x(© = (1,1,1)*, we have x(® = (1.0364011,1.0857072, 0.93119113)".

(¢) With x(@ = (0,0,0.5), we have x(*) = (0.00000000, 0.09999999, 1.0000000)".
) (

(d) With x(® = (0,0, 0)¢, we have x(*) = (0.49814471, —0.19960600, —0.52882595)*.
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t
G(x) = (\/:.,—1 — a3, /=% - :1:2) and x© = (0.7,0.4),

we have x(14) = (0.77184647, 0.41965131)".
(b) With

G(x) = (:r/v@, \/(1 + I%}/{&rl}) and x@ = (0.4,0.7)¢,

we have x(20) = (0.4999980, 0.8660221)".
(c) With

G(x) = (\/3?— T2, vVT1 — 5.3 —x1 — .rg]t and x@ = (5,1,—1)",

we have x(19 = (6.0000002, 1.0000000, —3.9999971)".
(d) With

t
G(x) = (\/2..1:3 + z2 — 272, \/(103:3 + 3) ,f8,:r:%/(7$2)) and x = (0.5,0.5,0)",

we have x(%0) = (0.5291548,0.4000018,0.09999853)".

9. (a) With x(?9 = (1,1, 1), we have x(*) = (0.5000000, 0, —0.5235988)".
(b) With x(% = (1,1,1)%, we have x*) = (1.036400, 1.085707,0.9311914)".
(¢) With x(? = (0,0, 0)?, we have x(*) = (0,0.1000000, 1.0000000)*.
(d) With x(© = (0,0,0)t, we have x(4) = (0.4981447, —0.1996059, —0.5288260)".

10. (a) Using G1(x) = (Vz; — 222, V12 — z3)! and x(P) = (0.7,0.4)" as in Exercise 8(a) gives a
square root of a negative number as the first iteration. Thus, the method fails.
t
(b) Using G1(x) = (.:l:fv@, V(1 —I—:c1‘5)/(3:1:1]) and x(© = (0.4,0.7)" as in Exercise 8(b)
gives x(10) = (0.49999807, 0.86602652) . The convergence is accelerated for this problem.
(c) Using G1(x) = (/37 — 22, V11 — 5,3 — 1 — x3)* and x(?) = (5,1, —1)* as in Exercise
8(c) gives x(1) = (6,1, —4):. The convergence very much accelerated for this problem.

(d) Using G1(x) = (V/2z3 + 72 — 252, /(10z3 + 7,2) /8, 212 /(222))* and x'9 = (0.5,0.5, 0)*
as in Exercise 8(d) leads to division by zero as the first iteration. Thus, the method fails.

11. A stable solution occurs when x; = 8000 and x, = 4000.
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10.1

12.

13.

Let F(x) = (f1(x), ..., fn(x))!. Suppose F is continuous at xg. By Definition 10.3,
Iim fi(x) = fi(xp), foreachi=1,.. n.

Given € > 0, there exists 4; > 0 such that

|fi(x) — filxo0)| <&,
whenever 0 < ||x — xp|| < §; and x € D.
Let § = minj<i<n 8. If 0 < ||x — xg|| < 4, then 0 < [|x — xo|| < & and |fi(x) — fi(x0)| < €,
for each i = 1, ..., n, whenever x € D. This implies that

IF(x) — F(x0)llo <€,

whenever ||x — xg|| < § and x € D. By the equivalence of vector norms, the result holds for
all vector norms by suitably adjusting 4.

For the converse, let € > 0 be given. Then there 1s a § > 0 such that
|F(x) — F(xo)|| <e,

whenever x € D and ||x — xp|| < 4. By the equivalence of vector norms, a number ¢’ > 0 can
be found with

|| fi(x) — fi(xo)l| <€,
whenever x € D and ||x — xg|| < §'.

Thus, imy_,y, fi(x) = fi(xg), for i = 1, ..., n. Since F(xg) is defined, the conditions in Defini-
tion 10.3 hold, and F is continuous at xg.

When A = O, the zero matrix, the result follows immediately, because in this case F(x) —

F(x0) = 0 for all x and xp in R".

Suppose A # 0. Let xg in R™ be arbitrary and £ > 0. Choose § = ¢/||A|| and xp — x < 4.
Then
|[F(x) — F(xp)|| = [|Ax — Axol| = [|A(x — %),
S0
£

||F(x) — F(xo)|| = ||A(x — xo)| < ||All - [Ix — xol| < [[A]l - Ay~ &

This, by Exercise 12, implies that F is continuous on IR".
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