9.5

1.

Two iterations of the QR Algorithm without shifting produce the following matrices.

[3.142857 —0.559397 0.0
(a) A®) = 10559397 2.248447 —0.187848
0.0 —0.187848 0.608696
[4.549020 1.206958 0.0
(b) A®) = [1.206958 3.519688 0.000725
| 0.0 0.000725 —0.068708
[4592020 —0.472934 0.0
() A®) = | -0.472034 3.108760 —0.232083
|00 —0.232083 1.298319
3.071429 0.855352 0.0 0.0
(@) A®) — 0.855352 3.314192 —1.161046 0.0
0.0 —1.1610446 3.331770 0.268898
| 0.0 0.0 0.268898 0.282609
[—3.607843 0.612882 0.0 0.0
(e) A® = 0.612882 —1.395227 —1.111027 0.0
€ - 0.0 —1.111027 3.133919 0.346353
0.0 0.0 0.346353 0.869151
[1.013260 0.279065 0.0 0.0
(F) A® — 0.279065 0.696255 0.107448 0.0
— | 00 0.107448 0.843061 0.310832
0.0 0.0 0.310832 0.317424

2. Two iterations of the QR Algorithm without shifting produce the following matrices.

[2.63333333
—1.16856988
0

[4.60130719
1.38545134
0

[6.28571429
1.16057692
0
0
0
[5.58655992
—0.60565234
0

0
0

(a) A®) =

(b) A®) =

() A® =

(@) A®) =

—1.16856988 0
0.93786276 —2.57594498
—2.57594498 0.42880391
1.38545134 0
4.16532313 0.24280011
0.24280011 1.23336968
1.16057692 0 0 0
5.26984127 1.49897084 0 0
1.49897084 4.80808081 1.50776756 0
0 1.50776756 3.07260525 0.23213209
0 0 0.23213209 0.56375839
—0.60565234 0 0 0
3.92585374 0.02385124 0 0
0.02385124 3.03035281 —1.22483017 0
0 —1.22483017 2.29033145 0.73675527
0 0 0.73675527 1.66690207

Page 1

9.5

3. The matrices in Exercise 1 have the following eigenvalues, accurate to within 1075,

(a) 3.414214, 2.000000, 0.58578644

(b) —0.06870782, 5.346462, 2.722246

(c) 1.267949, 4.732051, 3.000000

(d) 4.745281, 3.177283, 1.822717, 0.2547188
(e) 3.438803,0.8275517, —1.488068, —3.778287
(f) 0.9948440, 1.189091, 0.5238224, 0.1922421

4. The matrices have the following eigenvalues, accurate to within 1075,

(a) 3.9115033,2.1294613, —2.0409646
(b) 1.2087122,5.7912878, 3.0000000

(c) 6.0000000,2.0000000,4.0000000, 7.4641016,0.5358984
(d) 4.0274350,2.0707128, 3.7275564, 5.7839956, 0.8903002

5. The matrices in Exercise 1 have the following eigenvectors, accurate to within 107°.

(a) (—0.7071067,1, —0.7071067)t, (1,0, —1)t, (0.7071068, 1,0.7071068)*

(b) (0.1741209, —0.5343539, 1)¢, (0.4261735, 1,0.4601443)t, (1, —0.2777544, —0.3225401)t

(c) (0.2679492,0.7320508, 1), (1, —0.7320508, 0.2679492)%, (1,1, —1)t

(d) (—0.08029447, —0.3007254, 0.7452812, 1), (0.4592880, 1, —0.7179949, 0.8727118)¢,
(0.8727118,0.7179949, 1, —0.4592880)¢ (1, —0.7452812, —0.3007254, 0.08029447)!

(e) (—0.01289861, —0.07015299,0.4388026, 1), (—0.1018060, —0.2878618, 1, —0.4603102)¢,
(1,0.5119322,0.2259932, —0.05035423) (—0.5623391, 1,0.2159474, —0.03185871)f

(f) (—0.1520150, —0.3008950, —0.05155956, 1)%, (0.3627966, 1,0.7450807, 0.3045081)",
(1,0.00528962, —0.6907921, 0.1450703)¢, (0.8029403, —0.9884448, 1, —0.1237995)t

Page 2

9.5

6. (a) The inverse power method using x(® =

elgenvectors.

A; = 3.91150331,
A2 = 2.12046128,
Az = —2.04006459,

The inverse power method using x(©

elgenvectors.

A, = 1.20871215,
Ay = 5.79128785,
Az = 2.99999999,

(1,1,1)" gives the following eigenvalues and

x(9) = (0.34132546, —0.51819891, 1)*
x®) = (1,-0.17819414, —0.21683219)"
x(®) = (0.27053411, 1,0.21292940)¢

= (1,1,1)* gives the following eigenvalues and

x(2) = (0.5, —0.80564392, 1)t
x(2) = (0.35825757, 1,0.71654514)!
x@ = (1,0, -0.5)t

The inverse power method using x(%) = (1,1,1,1)? gives the following eigenvalues and
elgenvectors.

A1 = 5.99999999, x®) =(1,1,0,—1,-1)*

A2 = 199999999, x) =(1,-1,0,1,-1)*

Az = 3.99999999, x? = (1,0,—1,0,1)¢

Ay = 7.46410162, x = (0.5,0.86602540, 1, 0.86602540,0.5)*

As = 0.53589838, x(?) = (0.5, —0.86602540, 1, —0.86602540, 0.5)*

The inverse power method using x(%) = (1,1,1,1)? gives the following eigenvalues and

elgenvectors.

A, = 4.02743496,

Az = 2.0707128,

Az = 3.72755642,
5.78399557,
As = 0.89030025,

A4 =

x() = (—0.5009008, —0.4871586, —0.13534334, 1,0.97329762)"

x?) = (-0.01115300, —0.03267035,0.34106327, —0.92928720, 1)

x(2) = (0.78588946, 1,0.06722944, 0.04156975, 0.05713611)*
x(2 = (1,-0.78399557, —0.03323416, 0.00548238, 0.00196925)"
x(2) = (—0.01445632, —0.05941112, 1, 0.24454382, —0.11591404)"

Page 3

9.5

7. (a) First note that for any vector x = (x1,x3)" we have

[cosfl —sind] { T] B [Ilcosﬁ'—zzsinﬁ'

sin @ cosf T3 rismf + xacosf |’
and that

(71 cos@ — zo5in0)? + (71 sin 6 + 72 cos§)? = z2((cos)% + (sinH)?) + z2((—sinH)? + (cosh)?)

— 2 2
= z] + 3.

So the Il norms are the same.

Now let z = (z1, z2)* represent the vector that has the same magnitude as x but has been
rotated by the angle #. Let ¢ be the angle from the z-axis to the point (z1,z2) and let
T= 1.,':1:? + Ig = [|x||2. Then

Ty =rcos¢ and zg = rsing.

In a stmilar manner,

z1 = rcos(¢p+0) =rcosgcosf — reingsinf = xq cosf — o sinf

zg = rsin(¢ +0) = rcos¢sinf + rsin¢gcos @ = 1 sinf + x2 cosl

So the unique vector z that has the same [5 norm as x and 1s rotated by an angle of 4 1s
given by multiplying x by the rotation matrix.

(b) Consider the the vector x = (1,1)*, which has [, norm 1. If § = 7/4, then

cosfl —sinf 1] ”é—i _yg_ﬁ 1] 0
sin 6 cos 1| % JTE 1| v2|°

which has [, norm V2.

Page 4

9.5

8. Let P = (p;;) be a rotation matrix with nonzero entries p;; = p;; = cos#, p;; = —pj; = sin#,
and prr = 1, 1if k # i and k # j. For any n X n matrix A,

{AP)?‘S = Z OrkPls-
k=1
If s #1i,j, then pp, = 0 unless k = 5. Thus, (AP),; = a,s.
If s = j, then
(AP]”' = QrjPjj + AriPij = Qrj cosf + arisind.
If s =i, then

(AP)ri = arjpji + @ripii = —arj8m b + ap; cosh.
Similarly, (PA),s = Z:zlp,.kaks. If r #4, j, then p = 0 unless r = k. Thus, (PA),s = ays.
If r =i, then
(PA)is = pijajs + Pii@is = ajsSInf + a;s cosf.
If r = j, then
(PA}_'iS = Piilljs +Pj"iﬂ-is = ljs COS #— ig sinf.

9. Let C'= RQ, where R is upper triangular and @ is upper Hessenberg. Then c;; = 3 1, Tk qr;-
Since R is an upper triangular matrix, rix = 0if k < i. Thus ¢;; = > ,._; Tikqrj- Since @ is an
upper Hessenberg matrix, qi; = 0if £ > j+ 1. Thus, ¢;; = Z_‘:;: Tikqk;. The sum will be zero
it i > 7+ 1. Hence, ¢;; = 0if i > j + 2. This means that C is an upper Hessenberg matrix.

Page 5

9.5

10. (a) We have

ey —s, 0 0 0L o 0 o 0]
8ag Ca 0 0 0 0 3 —&3 0 0
0 0 1 0 0] [0 s3 e3 O 0
tpt :
PaFy = : 0 0 0 1
S .0 : 0
00 0 1) [0 0 O 0 1]
-Cg —8&aC3 8283 0]
82 Cac3 —S8al9 0 0
0 83 Ca 0
o o 0 1
: : : - 0
L0 0 0 o 01
(b) Let Qi = PiPi--- P be an upper triangular matrix except for the entries (Q)21,
(Qx)az2, ..., (Qk)k.k—1, which may be nonzero. Since multiplying @ by the rotation
matrix (Fp41)* can only change columns k and k+1 in forming Q41 = PjP§--- P{ P},
we only need to consider the entries (Qg+1)ix and (Qr4+1)ik+1, for i = k+2,. .., n. First,
we have
(@u+1)ik = 2 (Qn)is (Phs1) ;5 = (@n)ikcrs + (Qu)ik—15k11-
j=1

However, (Qk)ix — 0 for i > k and (Qk)ik+1 = 0, for i > k+ 1. Thus, (Qk+1)ik = 0,
for i > k + 2. Further,

(Qr+1)ik+1 = —(Qn)iksk+1 + (Qr)ik+1ck+1 =0,

for i > k+2. Thus, Q1 = PyP{--- P}, is upper triangular except for the entries in
positions (2,1), (3,2), ..., (k,k — 1), (k + 1, k), which may be nonzero.

From parts (a) and (b) and mathematical induction, it follows that the matrix PiPL--- P!
is upper triangular except that the entries in positions (2,1), (3,2), ..., (n,n — 1) may
be nonzero. Thus, the entries in positions (i, j), for i > j + 2 are zero, which means that
PiPL--- P! is an upper Hessenberg matrix.

Page 6

9.5

11. The following algorithm implements Jacobi’s method for symmetric matrices.

INPUT: dimension n, matrix A = (ai;), tolerance TOL, maximum number of iterations N.
OUTPUT: eigenvalues Aq,..., A, of A or a message that the number of iterations was exceeded.
STEP 1 Set FLAG =1; k1 =1.
STEP2 While (FLAG = 1) do Steps 3 — 10
STEP3 Fori=2 ..., n do Steps4- 8.
STEP4 Forj=1,..,i—1 do Steps 5 — 8.
STEP 5 If ai; = a;; then set
CO = 0.5v/2;
SI = CO
else set
b= la; — ij|1.
c = 2a;; sign(a;; — a;;); 1
1y T
Co=05(1+b/(+1)*)":
SI=0.5¢/ (CO (& +1%)?).
STEP6 Fork=1,...,n
if (k# i) and (k # j) then
set T = ag ;;
Y = Qk,i;
ai,; = CO -z+ SI -y;
ag,; = CO -y+ SI -z;
T = j ks
Y = Qi k:
ajx = CO -z+ SI -y;
air = CO -y— SI -z.
STEP7 Setx=a;;;
Y= aii;
aj; =CO-CO -x+2-81-CO-a;;+ SI-SI -y,
a;; =Sl -8l-x—2-SI-CO -q;;+ CO - CO -y.
STEP 8 Set a5 = 0; g4 = 0.
STEP 9 Set

S:E?=1Z?;i |ais].
STEP10 Ifts< TOL thenfori=1,...n set

)ii = Qij,
OUTPUT (A1, ..., An):
set FLAG = (.

else set k1 = k1 4+ 1;
if k1 > N then set FLAG = (.
STEP 11 If k&1 > N then
OUTPUT ("Maximum number of iterations exceeded’);
STOP.

Page 7

9.5

12. Jacobi’s method produces the following eigenvalues, accurate to within the tolerance:

—

a) 3.414214, 0.5857864, 2.0000000; 3 iterations

b) 2.722246, 5.346462, —0.06870782; 3 iterations

c) 4.732051, 3,1.267949; 3 iterations

d) 0.2547188, 1.822717, 3.177283, 4.745281; 3 iterations
)
)

e)

—1.488068, —3.778287, 0.8275517, 3.438803; 3 iterations
0.1922421, 1.189091, 0.5238224, 0.9948440; 3 iterations

_—

e

f

—

13. (a) To within 10~°, the eigenvalues are 2.618034, 3.618034, 1.381966, and 0.3819660.

(b) In terms of p and p the eigenvalues are —65.45085p/p, —90.45085p/p, —34.54915p/ p, and
—9.549150p/p.

14. (a) When a = 1/4, we have 0.97972997, 0.92060076, 0.82741863, 0.70771852, (0.57114328,
0.42886719, 0.29232093, 0.17255567, 0.07939063, and 0.02025441.

(b) When o = 1/2, we have 0.95945994, 0.84120152, 0.65483725, 0.41543703, 0.14228657,
—0.14226561, —0.41535813, —0.65488866, —0.84121873, and —0.95949118.

(¢) When a = 3/4, we have 0.93918991, 0.76180227, 0.48225588, 0.12315555, —0.28657015,
—0.71339842, —1.12303720, —1.48233299, —1.76182810, and —1.93923676.
The method appears to be stable for o < %

15. The actual eigenvalues are as follows:
(a) When a = i we have 0.97974649, 0.92062677, 0.82743037, 0.70770751, 0.57115742,
0.42884258, 0.29229249, 0.17256963, 0.07937323, and 0.02025351.

(b) When e = § we have 0.95949297, 0.84125353, 0.65486073, 0.41541501, 0.14231484,
—0.14231484, —0.41541501, —0.65486073, —0.84125353, and —0.95949297.

(c) When a = % we have 0.93923946, 0.76188030, 0.48229110, 0.12312252, —0.28652774,
—0.71347226, —1.12312252, —1.48229110, —1.76188030, and —1.93923946. The method
appears to be stable for o < %

Page 8

