9.2

In each instance we will compare the characteristic polynomial of A (C(A)) to that of B. They
must agree if the matrices are to be similar.

(a) p(A) =x? —4x + 3 # 2% — 2x — 3 = p(B).

(b) p(A) = 2% — 5z + 6 # z? — 6z + 6 = p(B).

(c) p(A) =2 — 42?2 + 52 — 2 # 2 — 422 4+ 52 — 6 = p(B).
(d) p(A) = 2® — 522 + 122 — 11 # 2% — 42? + 42 + 11 = p(B).

For a pair of matrices to be similar the determinants and characteristic polynomials must be

the same.
(a) det(A) =3 # 2 = det(B)
det(A) = —4 = det(B), but p(A) = A2 + X —4 £ X2 — X\ — 4= p(B).
det(A) =1 # —8 = det(B)
(A) = =24 # 0 = det(B)

In each case we have A% = (PDP(-1)(PDP-1)(PDP(-1)) = PD3P(-1),
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9.2

4. (a) The technique is described in part (b). The result is
10 -6
-9 7 |-

(b) It would be easy to simply use A® from Exercise 3(b) and multiply by A. However, we
don’t explicitly have A. Alternatively,
(1 -15
10 16 |

4 _ 4p-1_ | —1 2 16 0
w-rore =[G 1]

(c) The technique is described in part (b). The result is

T -4 1
4 -3 2|.
2 —4 6

(d) The technique is described in part (b). The result is

16 0 0
A= 0 16 0 |.
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5. They are all diagonalizable with P and D as follows.

[ 5 0
] and D = [ 0 0 ]
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1 -1 20
6. (a) P= 0 l]a,ndD:[U 1]
[ —1 1 1 0
[:b:lP:_ 11]&ndD:[D 3]
[1 -1 -1 4 00
() P=]1 0 1|andD=|0 1 0
1 1 0 001
[0 1 1 2 00
d P=|-101|andD=|0 2 0
10 0 00 3

~Z 10
(a) Q= 11’2’_5 lgj]andﬂz{o 3}
[ 2 0 100
(€) Q= 01 0|andD=]|0 2 0
o L 00 3

8. The matrix will be positive definite if and only if the all the principle leading submatrices
have a positive determinant. Let A, denote the n x n principle leading submatrix of A.

(a) det(A;) =4 det(A;) =12, and det(A) = 44, so A is positive definite. A factoriza-
tion D = Q'AQ has
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10 and D=|0 4++5 0
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(b) det(A) =0 so A is not positive definite.
(c) det(A) = —5 so A is not positive definite.

(d) det(A1) = 8 det(A2) = 48, det(As) = 352, and det(A) = 2736, so A is positive
definite. A factorization D = Q'AQ has, approximately,

—0.6005 —0.6005 —-0.4496 —0.2770 13.9587 0 0

o' — —0.7071  0.7071 0 0 d D— 0 4 0
N 0.2844  0.2844 -0.8906  0.2122 o N 0 0 6.4841
—0.2419 -0.2419 0.0688  0.9371 00 0
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9. In each case the matrix fails to have 3 linearly independent eigenvectors.

(a) det(A) = 12, so A is nonsingular.
(b) det(A) = —1, so A is nonsingular.
(c) det(A) = 12, so A is nonsingular.
(d) det(A) =1, so A is nonsingular.

10. (a) The matrix is clearly singular because it has a row (and a column) all of whose entries
are 0. However, the eigenvalues of A, which are Ay =0, Ay = 1, and A3 = 3 are distinet
so the corresponding eigenvectors, x1 = (0,0,1)%, x; = (1,1,0)f, and x3 = (1, —1,)", can
be used to form the columns of the matrix P with A = PDP~!. The matrix D is the
diagonal matrix with diagonal entries in the order 0, 1, and 3.

(b) The eigenvalues of A are A1 = 0, A2 = 3, and A3 = 3, so A is singular. However,
there are three linearly independent eigenvectors of A. The eigenvector x; = (1,1,1)F,
corresponding to Ay = 0, and the eigenvectors xa = (1,0, —1)" and x3 = (1,—1,0)¢,
corresponding to Az = A3 = 3. These eigenvectors can be used to form the columns of the
matrix P with A = PDP~!. The matrix D is the diagonal matrix with diagonal entries
in the order 0, 3, and 3.

11. (a) The eigenvalues and associated eigenvectors are
A1 = 5.307857563, (0.59020967, 0.51643129, 0.62044441)%
A2 = —0.4213112993, (0.77264234, —0.13876278, —0.61949069)*;
A3 = —0.1365462647, (0.23382978, —0.84501102, 0.48091581)°.

(b) A is not positive definite because Ay < 0 and Az < 0.

12. Since B is nonsingular, B~! exists and
AB=1-(AB)=(B™'B)(AB) = B"(BA)B.
So AB is similar to BA.

13. Because A i1s similar to B and B i1s similar to C' there exist invertible matrices S and T with

A=S8"1BS and B=T"1CT Hence A is similar to C' because
A=8"'BS=s"YT'cT)s = (7T HC(TS) = (TS)~'C(TS).
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14. Suppose that A= PBP™L.
(a) We have
det(A) = det(PBP~!) = det(P) det(B) det(P~1)
= det(P)det(P~1) det(B) = det(PP~ ') det(B) = det(I) det(B) = det(B).

(b) We have
p(A) = det(A — AI) = det(PBP~' —AP-I-P71)
— det(P)det(B — M) det(P~1) = det(B — M) = p(B).

(¢) The characteristic polynomials of A and B agree, so A and B have the same eigenvalues. The

matrix A is singular if and only if 0 1s an eigenvalue of A, which is true if and only if 0 1s an
eigenvalue of B. So A is nonsingular if and ony if B is nonsingular.

(d) We have
Al = (PBP_I]_I = (P_lj_lB_lP_l — PBlp1
So A~ 1! is similar to B~ 1.
(e) We have
At — (PBP—I)t — (P—lthtPt — (Pt)_lBtPt.

Since P is invertible if and only if P! is invertible, A’ is similar to B®.

15. The matrix A has an eigenvalue of multiplicity 1 at A; = 3 with eigenvector s; = (0,1, 1), and
an eigenvalue of multiplicity 2 at A2 = 2 with linearly independent eigenvectors s = (1,1,0)*
and s3 = (—2,0,1)%. Let

S1 = {s1,82,83}, S2={sa,s1,s3}, and S3= {sy,s3,s1}.
Then
A=S7'D;S; = S5 D85 = S3 ' D3y Sa,
so A 1s similar to Iy, Ds, and Ds.

16. (1) Let the columns of @ be denoted by the vectors q1,qga, ..., qn, which are also the rows
of @Q'. Because @ is orthogonal, (q;)" - q; is zero when i # j and 1 when i = j. But the
ij- entry of Q'Q is (q;)* - q; for each i and j so Q'Q = I. Hence Q' = QL.

(ii) From part (i) we have Q'Q = I, so

(@x)(Qy) = (x'@)(Qy) =x"(Q'Q)y =x'(I)y = xy.
(iii) This follows from part (ii) with x replacing y, since then
1Qx]]2 = (@x)"(@x) = x"x = ||x][3.
17. The matrix A has an eigenvalue of multiplicity 1 at Ay = 3, and an eigenvalue of multi-

plicity 2 at A2 = 2. However, A2 = 2 has only one linearly independent unit eigenvector,
so by Theorem 9.13, A is not similar to a diagonal matrix.
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18.

19.

Let the columns of @ be denoted by the vectors q1,qs, ..., gy, which are also the rows
of @* = @~ !. Then Q'Q = I is equivalent to having (q;)f - q; = 0 when i # j and
(qi)!-q; = 1, foreach i = 1,2,...,n and j = 1,2,...,n. But this is precisely what is
required for the columns of ) to form an orthonormal set. Hence () is an orthogonal
matrix.

The proof of Theorem 9.13 follows by considering the form the diagonal matrix must
assume. The matrix A is similar to a diagonal matrix D if and only if an invertible
matrix S exists with D = S~1AS, which is equivalent to AS = §D, with § invertible.
Suppose that we have AS = SD with the columns of § denoted sq,sq,...,s, and the
diagonal elements of D denoted dy,ds,...,d,. Then As; = d;s; for eachi = 1,2, ... n.
Hence each d; 1s an eigenvalue of A with corresponding eigenvector s;. The matrix §
1s invertible, and consequently A is similar to D, if and only if there are n linearly
independent eigenvectors that can be placed in the columns of S.
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