9.1

1. (a) The eigenvalues and associated eigenvectors are Ay = 2,vi!) = (1,0,0)%; A2 = 1,v? =
(0,2,1)% and Az = —1,v(® = (—1,1,1)!. The set is linearly independent.

(b) The eigenvalues and associated eigenvectors are A; = 2,v(1) = (0,1,0)%; Ay = 3,v(®) =
(1,0,1)%; and Az = 1,v®) = (1,0, —1)t. The set is linearly independent.

(c) The eigenvalues and associated eigenvectors are A\ = 1,v(Y) = (0,—1,1)5 X = 1 +
V2,v? = (v/2,1,1)5 and A3 =1— /2, v®) = (—4/2,1,1)". The set is linearly indepen-
dent.

(d) The eigenvalues and associated eigenvectors are A\; = Ay = 2 with v = (1,0,0)* and
A3 = 3 with v(*) = (0,1,1)!. There are not three linearly independent eigenvectors.

2. (a) Eigenvalue A; = 1 has multiplicity 3 and eigenvectors vi!) = (—1,1,0)" and v? =
(1,0,1)%. There are not three linearly independent eigenvectors.

(b) Eigenvalue A; = 3 has multiplicity 2 and eigenvectors v(!) = (—1,1,0)! and v(?) =
(—1,0,1)t. Eigenvalue A2 = 0 has eigenvector v(*) = (1,1,1)!. There are three linearly
independent eigenvectors.

(c) Eigenvalue A\; = 4 has eigenvector v(1) = (1,1,1)!. Eigenvalue Ay = 1 has multiplicity
2 and eigenvectors v(?) = (—1,1,0)* and v(® = (—1,0,1)t. There are three linearly
independent eigenvectors.

(d) Eigenvalue A\; = 2 has multiplicity 2 and eigenvectors v!!) = (1,0,0)! and v(?) =
(0,—1,1). Eigenvalue Ay = 3 has eigenvector v(®) = (1,1,0)!. There are three linearly
independent eigenvectors.
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9.1

3. The eigenvalues are within the Gersgorin circles that are shown.

(a) The three eigenvalues are within {A| |A\| <2} U {A] [A — 2| < 2} so p(A4) < 4.

SN

Ay

)
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9.1

4. The eigenvalues are within the GerSgorin circles that are shown.

(a) The four real eigenvalues satisfy —8 < A < 1, so p(A) < 8.

‘.._J—-
=Y

(d) The real eigenvalues satisfy either 1 < A<5o0r6 <A <12,501 < p(A) < 12.

y
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9.1

5. All the matrices except (d) have 3 linearly independent eigenvectors. The matrix in part (d)
has only 2 linearly independent eigenvectors. One choice for P is each case 1s

(a)

[ 1 0 1]
1 2 0],
11 0|
(b) ) )
0 -1 1
1 0 0],
0 1 1
(c)
0 V2 -2
-1 1 1
1 1 1

1 1 1 JJr 11 00 0
Pp=|1 o0 -1], P—lz§ 1 1 -2|, and D=P=|0 3 0
1 -1 0 1 -2 1 00 3
()
1 11 o1 -2 100
p=| 0o -1 1], P—1:§ 1 2 1|, and D=P=|0 1 0
-1 01 1 1 1 00 4
(d)
1 01 1 -1 -1 2.0 0
P=|0 11|, pP'=|0 0 —-1|. and D=P=]|0 2 0
0 -1 0 0o 1 1 00 3

7. The vectors are linearly dependent because —2v; + Tvgz — 3vg = 0.

8. The vectors are linearly independent if and only if the matrix formed by having these vectors
as columns (or rows) is nonsingular, which is true if and only if the determinant of this matrix
18 nonzero. Since

00 -2
det| 1 2 0]=2
11 1

the vectors are linearly independent.
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9.1

9. If eyvi 4 -+ cxvy = 0, then for any j, with 1 < j <k, we have c;vivy +--- + gpvivye =0,

But orthogonality gives c;viv; =0, for i # j, so ¢;viv; = 0 and since vv; # 0, we must have

3
Cj:D.

10. There must be a largest subset {xj,xs,...,x;}, with j < k that is linearly independent
because the set with the nonzero vector {x;} is linearly independent. Suppose that we have
this largest linearly independent set and that j < k. Then {xi1,x2,...,X;j,X;j4+1} is linearly
dependent and there is a set of constants {c;, ca, ..., ¢;}, not all zero, with

Xj+1 = €1X1 + c2X2 + - - - + ¢ X;.
Because these are all eigenvectors, Ax; = A;jx; foreachi=1,2,...54+ 1, so
AXJi+1 = )tj+1xj-+1 = C])\lX] + 6‘2)‘12}{2 +---+ CjAij.
But we also have
Aj41Xi41 = €1Aj 11Xy + e2Aj 1 Xe + -+ G A 41X,
and subtracting these equations gives

D = C]_()Ll — )\j+1:]x1 — Cg(.)\g — )Lj+1)x2 +-- C}()‘j — )"j-i-l)xj

But the set {xl, X2,... ,xj-} was assumed to be linearly independent, so we must have
0=-e1(M — Aj41) = c2(A2 — Ajp1) = -+ = ¢5(A5 — Ajpa).
Since eigenvalues are all distinct, this implies that 0 = ¢; = ¢3 = --- = ¢;. This contradicts the
original statement that x;;; could be written as a combination of the vectors x;,x2,...,x;.
The only assumption that was made was that j < k, and this statement must be false. As a
consequence, the entire set {x1,Xg,..., %} must be linearly independent.
11. Since {v;}™ , is linearly independent in IR", there exist numbers ¢y, ..., ¢, with

X=0c1V]1+ -+ CpVp.
Hence, for any k, with 1 < k < n,

t t t H
VEX = C1VEpV1 + - -+ CaVipVn = CkVVEk = Ck.

12.  Not necessarily. Consider the vectors x; = (1,0)f, xo = (0,1)%, and x3 = (1, 1)".
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9.1

13. (a) (i) 0 = e1(1,1) +ea(—2,1)" implies that [ i _? } [ zl ] = [ g ] But det { 1 _? ] =
2
3 # 0 so by Theorem 6.7 we have ¢ = ¢ = 0.

(i) {(1,1)*,(=3/2,3/2)'}.

(b) (i) The determinant of this matrix is —2 # 0, so {(1,1,0)*,(1,0,1)%,(0,1,1)*} is a linearly
independent set.
(1) {(1,1,0)%(1/2,-1/2,1)",(—2/3,2/3,2/3)"}
(i) {(v2/2,v2/2,0)%, (V6/6,—V6/6,6/3)",(—v3/3,V3/3,V3/3)}

() 1) 0 =1cy(1,1,1,1)" + ¢5(0,2,2,2)" + ¢3(1,0,0,1)*, then we have

(E1):e1+e3=0, (E3):c1+2c2=0, (E3):c1+2c0=0, (Ej):c1+2c5+ec3=0.

Subtracting (FE3) from (Ej,) implies that c3 = 0. Hence, from (E;) we have ¢; = 0, and
from (E3) we have cg = 0. The vectors are linearly independent.
(i) {(1,1,1,1)5,(=3/2,1/2,1/2,1/2)* (0,—1/3,—1/3,2/3)"}
(i) {(1/2,1/2,1/2,1/2)%, (—v/3/2,v/3/6,v/3/6,+/3/6)t, (0, —/6/6,—/6/6,/6/3)}
(d) (i) If A is the matrix whose columns are the vectors vy, vo, va, v4, vi, then det A = 60 # 0,
so the vectors are linearly independent.
(1) {(2,2,3,2,3)%(2,-1,0,-1,0)%,(0,0,1,0,—-1)%,(1,2, 1,0, —-1)%*,(-2/7,3/7,2/7,—1,2/7)%}
(iii) {(+/30/15,+/30/15,+/30/10,+/30/15,+/30/10)t, (+/6/3, —/6/6,0, —/6/6, 0)*,
{0101 "'/::)afg! D'.- _ﬂjg)t| (ﬁf?'! Qﬁj?'* _\ﬁ/h?* D: _ﬁjT}tv
(—+/70/35, 3+/70/70,+/70/35, —/70/10,/70/35)*}
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14. To show hinear independence we will show that the matrix whose columns are the given vectors
has a nonzero determinant. In case there are fewer vectors than the dimension of the space we
can add a vector or vectors to complete the matrix. If the larger set is linearly independent,
the original set will also be linearly independent.

(a) (1) The matrix has determinant 7.

1) The set ¢ (2, —1 t,l 1,2)! } is orthogonal.
(ii) g

5
V5 V5

(i11) The set {T(Q, —1)t, T[l,ﬂ}t} is orthonormal.
5

(b) (i) The matrix has determinant —2.

ii) The set 4 (2,—1,1) ! 0,1,1)" 2 1,1,—1)*} is orthogonal.
(ii) g

"2 '3
%ﬁ{ﬂ, 1-, 1)*,"?(& 1,1)t, ‘?(1, 1,—1)f} is orthonormal.

(¢) (i) The matrix with the vector (0,0,0,1)" added in the last column has determinant 1.

(i1) The set {(1, 1,1,1)% i{—g, 1,1,1)% %{U, 2,1, 1}t} is orthogonal.

(i11)) The set {%(1, 1,1,1)%, g(?:, —1,-1,-1)%, \/—E(D, 2,1, 1}‘} is orthonormal.

(i11)) The set {

6
(d) (i) The matrix with the vector (0,0,1,0,0)" added in the last column has determinant
12.
(i) The set{(Q,Q,D, 2,1}*,%{—5,8,0, —5,4)f,%(—5,2,0,5,—4)*,3(—1,—1,0,1,2)f} is
orthogonal.

(i11)) The set

V13 . 13V/130
{F(252|D? 21 1:] 5 W

VT

v70 v7
7

(5'.- _8'.- 0: 5| _4)t! TU (5'~ _21 0': _5': 4}t! - (1| 1101 _1: _Q)t}

1s orthonormal.

15. If A 1s a strictly diagonally dominant matrix, then in each row, the sum of the magnitudes of
the off-diagonal entries in the row are less than the magnitude of the diagonal entry in that
row. By Gersgorin Circle Theorem this implies that for each row the magnitude of the center
of the Gersgorin circle for that row exceeds the radius so the circle does not contain the origin.
Hence 0 cannot be in any GerSgorin circle and consequently cannot be an eigenvalue of A.
This implies that A in nonsingular.
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16.

17.

Let (X)x = {x1,x2,...,xx} and define the set (V)i = {v1,va,..., vk} in the Gram-Schmidt

manmner as
k-1

vix
vi =x;, and vy =X — E - Vi.
Vt-Vi

i=1

for each k > 1. We will use Mathematical Induction to show that (V') is orthogonal for every
integer k.

First note that since

vixa
vi=x;, and vp=x3— | — V1,

we have

ViXQ
t ot t ot i _
Vi-Vg =Vj-Xg— - Vi-Vy =V -Xg— vy -xg =0,

so (V)3 is an orthogonal set.

Now assume that (V'); is orthogonal for some positive integer j, and consider (V');41. Since
(V); is orthogonal the set (V);41 will be orthogonal if and only if vt - v;41 = 0 for each
s=12...4.

For each s = 1,2,...j we have

J i
VX
t t ot ij+1 t
Ve Vi1 = Ve Xj41 — E (_ 7 ) (Vs . V!’.)

i=1 Vivi

t
ot VeXi+1 t ot t ot
= vy Xip1 — (= ) (Ve vs) = v X1 — v - x5, =0
VoVs

So (V); being orthogonal implies that (V');3+1 is also orthogonal. Mathematical Induction
implies that (V'); is true for all positive integers j.

(a) Let p be an eigenvalue of A. Since A is symmetric, p is real and Theorem 9.13 gives
0 < p < 4. The eigenvalues of A — 4] are of the form g — 4. Thus,

p(A—4]) = max|p — 4| =max(4 —p) =4 —ming =4 — A= |A—4].
(b) The eigenvalues of A — 4[ are —3.618034, —2.618034, —1.381966, and —0.381966, so
p(A —4@) = 3.618034 and A = 0.381966. An eigenvector is (0.618034, 1,1,0.618034)¢.
(¢) As in part (a), 0 < p <6, so |A— 6| = p(B —6I).

(d) The eigenvalues of B — 61 are —5.2360673, —4, —2, and —0.76393202, so p(B — 61) =
5.2360673 and A = 0.7639327. An eigenvector is (0.61803395, 1, 1,0.6180395)".
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