- The determinants of the matrices are:
 - (a) 8

- (b) -8
- (c) 0

(d) 0

- The determinants of the matrices are:
 - (a) -8
- (b) 14
- (c) 0

(d) 3

- 3. The answers are the same as in Exercise 2.
- The answers are the same as in Exercise 1.
- 5. The matrix is singular when $\alpha = -\frac{3}{2}$ and when $\alpha = 2$.
- The matrix is singular when α = 6.
- 7. The system has no solutions when $\alpha = -5$
- 8. The system has no solutions when $\alpha = -5$.
- 9. When n = 2, det $A = a_{11}a_{22} a_{12}a_{21}$ requires 2 multiplications and 1 subtraction. Since

$$2! \sum_{k=1}^{1} \frac{1}{k!} = 2$$
 and $2! - 1 = 1$,

the formula holds for n=2. Assume the formula is true for n=2,...,m, and let A be an $(m+1)\times(m+1)$ matrix. Then

$$\det A = \sum_{i=1}^{m+1} a_{ij} A_{ij},$$

for any i, where $1 \le i \le m+1$. To compute each A_{ij} requires

$$m! \sum_{k=1}^{m-1} \frac{1}{k!}$$
 multiplications and $m!-1$ additions/subtractions.

Thus, the number of multiplications for $\det A$ is

$$(m+1)\left[m!\sum_{k=1}^{m-1}\frac{1}{k!}\right]+(m+1)=(m+1)!\left[\sum_{k=1}^{m-1}\frac{1}{k!}+\frac{1}{m!}\right]=(m+1)!\sum_{k=1}^{m}\frac{1}{k!},$$

and the number of additions/subtractions is

$$(m+1)[m!-1]+m=(m+1)!-1.$$

By the principle of mathematical induction, the formula is valid for any $n \geq 2$.

10. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \text{and} \quad \tilde{A} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Expanding along the third rows gives

$$\det A = a_{31} \det \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix} - a_{32} \det \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix} + a_{33} \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= a_{31}(a_{12}a_{23} - a_{13}a_{22}) - a_{32}(a_{11}a_{23} - a_{13}a_{21}) + a_{33}(a_{11}a_{22} - a_{12}a_{21})$$

and

$$\det \tilde{A} = a_{31} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{12} & a_{13} \end{bmatrix} - a_{32} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{11} & a_{13} \end{bmatrix} + a_{33} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}$$

$$= a_{31}(a_{13}a_{22} - a_{12}a_{23}) - a_{32}(a_{13}a_{21} - a_{11}a_{23}) + a_{33}(a_{12}a_{21} - a_{11}a_{22}) = -\det A.$$

The other two cases are similar.

- 11. The result follows from $\det AB = \det A \cdot \det B$ and Theorem 6.17.
- 12. (a) The solution is $x_1 = 0$, $x_2 = 10$, and $x_3 = 26$.
 - (b) We have $D_1 = -1$, $D_2 = 3$, $D_3 = 7$, and D = 0, and there are no solutions.
 - (c) We have $D_1 = D_2 = D_3 = D = 0$, and there are infinitely many solutions.
 - (d) Cramer's rule requires 39 Multiplications/Divisions and 20 Additions/Subtractions.
- (a) If D_i is the determinant of the matrix formed by replacing the ith column of A with b
 and if D = det A, then

$$x_i = D_i/D$$
, for $i = 1, \ldots, n$.

(b)
$$(n+1)! \left(\sum_{k=1}^{n-1} \frac{1}{k!} \right) + n$$
 multiplications/divisions; $(n+1)! - n - 1$ additions/subtractions.