- 1. (a) Intersecting lines with solution $x_1 = x_2 = 1$.
 - (b) One line, so there is an infinite number of solutions with $x_2 = \frac{3}{2} \frac{1}{2}x_1$.
 - (c) One line, so there is an infinite number of solutions with $x_2 = -\frac{1}{2}x_1$.
 - (d) Intersecting lines with solution $x_1 = \frac{2}{7}$ and $x_2 = -\frac{11}{7}$.
- 2. (a) Intersecting lines whose solution is $x_1 = x_2 = 0$.
 - (b) Parallel lines, so there is no solution.
 - (c) Three lines in the plane that do not intersect at a common point.
 - (d) Two planes in space which intersect in a line with $x_1 = -\frac{5}{4}x_2$ and $x_3 = \frac{3}{2}x_2 + 1$.
- Gaussian elimination gives the following solutions.
 - (a) $x_1 = 1.0, x_2 = -0.98, x_3 = 2.9$
 - (b) $x_1 = 1.1, x_2 = -1.1, x_3 = 2.9$
- 4. Gaussian elimination gives the following solutions.
 - (a) $x_1 = -0.70, x_2 = 1.1, x_3 = 2.9$
 - (b) $x_1 = -0.88, x_2 = 0.74, x_3 = 3.0$
- Gaussian elimination gives the following solutions.
 - (a) $x_1 = 1.1875, x_2 = 1.8125, x_3 = 0.875$ with one row interchange required
 - (b) $x_1 = -1, x_2 = 0, x_3 = 1$ with no interchange required
 - (c) $x_1 = 1.5, x_2 = 2, x_3 = -1.2, x_4 = 3$ with no interchange required
 - (d) No unique solution
- Gaussian elimination gives the following solutions.
 - (a) $x_1 = -4$, $x_2 = -8$, $x_3 = -6$ with one row interchange required
 - (b) $x_1 = \frac{22}{9}, x_2 = -\frac{4}{9}, x_3 = \frac{4}{3}, x_4 = 1$ with one row interchange required
 - (c) $x_1 = 13$, $x_2 = 8$, $x_3 = 8$, $x_4 = 5$ with one row interchange required.
 - (d) $x_1 = -1$, $x_2 = 2$, $x_3 = 0$, $x_4 = 1$ with one row interchange required.
- 7. Gaussian elimination with *Digits:=10* gives the following solutions:
 - (a) $x_1 = -227.0769$, $x_2 = 476.9231$, $x_3 = -177.6923$;
 - (b) $x_1 = 1.001291$, $x_2 = 1$, $x_3 = 1.00155$;
 - (c) $x_1 = -0.03174600$, $x_2 = 0.5952377$, $x_3 = -2.380951$, $x_4 = 2.777777$;
 - (d) $x_1 = 1.918129$, $x_2 = 1.964912$, $x_3 = -0.9883041$, $x_4 = -3.192982$, $x_5 = -1.134503$.

- 8. Gaussian elimination with Digits:=10 gives the following solutions:
 - (a) $x_1 = 0.9798657720$, $x_2 = 4.281879191$, $x_3 = 17.48322147$;
 - (b) $x_1 = 6.461447620$, $x_2 = 8.394321092$, $x_3 = -0.01347368618$;
 - (c) $x_1 = 1.349448559$, $x_2 = -4.67798776$, $x_3 = -4.032893779$, $x_4 = -1.656637732$;
 - (d) $x_1 = 13.49999998$, $x_2 = -11.50000000000$, $x_3 = 23.75000003$, $x_4 = 121.5000003$, $x_5 = 97.75000025$.
- 9. (a) When $\alpha = -1/3$, there is no solution.
 - (b) When $\alpha = 1/3$, there is an infinite number of solutions with $x_1 = x_2 + 1.5$, and x_2 is arbitrary.
 - (c) If $\alpha \neq \pm 1/3$, then the unique solution is

$$x_1 = \frac{3}{2(1+3\alpha)}$$
 and $x_2 = \frac{-3}{2(1+3\alpha)}$.

- 10. (a) $\alpha = 1$
 - (b) $\alpha = -1$
 - (c) $x_1 = -1/(1-\alpha), x_2 = 1, x_3 = 1/(1-\alpha)$

- Suppose x'₁,...,x'_n is a solution to the linear system (6.1).
 - The new system becomes

$$\begin{split} E_1 : & a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ & \vdots \\ E_i : & \lambda a_{i1}x_1 + \lambda a_{i2}x_2 + \ldots + \lambda a_{in}x_n = \lambda b_i \\ & \vdots \\ E_n : & a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n. \end{split}$$

Clearly, $x'_1, ..., x'_n$ satisfies this system. Conversely, if $x_1^*, ..., x_n^*$ satisfies the new system, dividing E_i by λ shows $x_1^*, ..., x_n^*$ also satisfies (6.1).

(ii) The new system becomes

$$\begin{split} E_1 : & a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ & \vdots \\ E_i : & (a_{i1} + \lambda a_{j1})x_1 + (a_{i2} + \lambda a_{j2})x_2 + \ldots + (a_{in} + \lambda a_{jn})x_n = b_i + \lambda b_j \\ & \vdots \\ E_n : & a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n. \end{split}$$

Clearly, $x'_1, ..., x'_n$ satisfies all but possibly the *i*th equation. Multiplying E_j by λ gives

$$\lambda a_{j1}x_1' + \lambda a_{j2}x_2' + \dots + \lambda a_{jn}x_n' = \lambda b_j,$$

which can be subtracted from E_i in the new system results in the system (6.1). Thus, $x'_1, ..., x'_n$ satisfies the new system. Conversely, if $x_1^*, ..., x_n^*$ is a solution to the new system, then all but possibly E_i of (6.1) are satisfied by $x_1^*, ..., x_n^*$. Multiplying E_j of the new system by $-\lambda$ gives

$$-\lambda a_{j1}x_1^* - \lambda a_{j2}x_2^* - \dots - \lambda a_{jn}x_n^* = -\lambda b_j.$$

Adding this to E_i in the new system produces E_i of (6.1). Thus, $x_1^*, ..., x_n^*$ is a solution of (6.1).

- (iii) The new system and the old system have the same set of equations to satisfy. Thus, they have the same solution set.
- Change Algorithm 6.1 as follows:

STEP 1 For
$$i = 1, \ldots, n$$
 do STEPS 2, 3, and 4.

STEP 4 For
$$j = 1, ..., i - 1, i + 1, ..., n$$
 do STEPS 5 and 6.

STEP 8 For
$$i = 1, ..., n$$
 set $x_i = a_{i,n+1}/a_{ii}$.

In addition, delete STEP 9.

13. The Gauss-Jordan method gives the following results.

(a)
$$x_1 = 0.98, x_2 = -0.98, x_3 = 2.9$$

(b)
$$x_1 = 1.1, x_2 = -1.0, x_3 = 2.9$$

14. The Gauss-Jordan method with single precision arithmetic gives the following solutions.

(a)
$$x_1 = -227.0787$$
, $x_2 = 476.9262$, $x_3 = -177.6934$

(b)
$$x_1 = 1.000036$$
, $x_2 = 0.9999991$, $x_3 = 0.9986052$

(c)
$$x_1 = -0.03177120, x_2 = 0.5955572, x_3 = -2.381768, x_4 = 2.778329$$

(d)
$$x_1 = 1.918129$$
, $x_2 = 1.964912$, $x_3 = -0.9883036$, $x_4 = -3.192982$, $x_5 = -1.134503$

 The results for are listed in the following table. (The abbreviations M/D and A/S are used for multiplications/divisions and additions/subtractions, respectively.)

	Gaussian	elimination	Gauss-Jordan		
n	M/D	A/S	M/D	A/S	
3	17	11	21	12	
10	430	375	595	495	
50	44150	42875	64975	62475	
100	343300	338250	509950	499950	

16. (a) The Gaussian elimination procedure requires

$$\frac{\left(2n^3 + 3n^2 - 5n\right)}{6}$$
 Multiplications/Divisions

and

$$\frac{n^3-n}{3}$$
 Additions/Subtractions.

The additional elimination steps are:

For
$$i = n, n - 1, ..., 2$$

for
$$j = 1, ..., i - 1$$
,

set
$$a_{j,n+1} = a_{j,n+1} - \frac{a_{ji}a_{i,n+1}}{a_{ii}}$$
.

This requires

$$n(n-1)$$
 Multiplications/Divisions

and

$$\frac{n(n-1)}{2}$$
 Additions/Subtractions.

Solving for

$$x_i = \frac{a_{i,n+1}}{a_{ii}}$$

requires n divisions. Thus, the totals are

$$\frac{n^3}{3} + \frac{3n^2}{2} - \frac{5n}{6}$$
 Multiplications/Divisions

and

$$\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$$
 Additions/Subtractions.

(b) The results are listed in the following table. In this table the abbreviations M/D and A/S are used for Multiplications/Divisions and for Additions/Subtractions, respectively.

	Gaussian Elimination		Gauss-Jordan		Hybrid	
n	M/D	A/S	M/D	A/S	M/D	A/S
3 10 50 100	17 430 44150 343300	11 375 42875 338250	21 595 64975 509950	12 495 62475 499950	20 475 45375 348250	11 375 42875 338250

- 17. The Gaussian-Elimination-Gauss-Jordan hybrid method gives the following results.
 - (a) $x_1 = 1.0, x_2 = -0.98, x_3 = 2.9$
 - (b) $x_1 = 1.0, x_2 = -1.0, x_3 = 2.9$
- 18. The Gauss-Jordan hybrid method with single-precision arithmetic gives the following solutions.
 - (a) -227.0788, 476.9262, -177.6934
 - (b) 0.9990999, 0.9999991, 0.9986052
 - (c) -0.03177060, 0.5955554, -2.381768, 2.778329
 - (d) $x_1 = 1.918126$, $x_2 = 1.964916$, $x_3 = -0.9883027$, $x_4 = -3.192982$, $x_5 = -1.134503$
- (a) There is sufficient food to satisfy the average daily consumption.
 - (b) We could add 200 of species 1, or 150 of species 2, or 100 of species 3, or 100 of species 4.
 - (c) Assuming none of the increases indicated in part (b) was selected, species 2 could be increased by 650, or species 3 could be increased by 150, or species 4 could be increased by 150.
 - (d) Assuming none of the increases indicated in parts (b) or (c) were selected, species 3 could be increased by 150, or species 4 could be increased by 150.

20. (a) For the Trapezoidal rule m = n = 1, $x_0 = 0$, $x_1 = 1$ so that for i = 0 and 1, we have

$$u(x_i) = f(x_i) + \int_0^1 K(x_i, t)u(t) dt$$

= $f(x_i) + \frac{1}{2} [K(x_i, 0)u(0) + K(x_i, 1)u(1)].$

Substituting for x_i gives the desired equations.

(b) We have n = 4, $h = \frac{1}{4}$, $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, and $x_4 = 1$, so

$$u(x_i) = f(x_i) + \frac{h}{2} \left[K(x_i, 0)u(0) + 2K\left(x_i, \frac{1}{4}\right)u\left(\frac{1}{4}\right) + 2K\left(x_i, \frac{1}{2}\right)u\left(\frac{1}{2}\right) + 2K\left(x_i, \frac{3}{4}\right)u\left(\frac{3}{4}\right) + K(x_i, 1)u(1) \right],$$

for i = 0, 1, 2, 3, 4. This gives

$$u(x_i) = x_i^2 + \frac{1}{8} \left[e^{x_i} u(0) + 2e^{\left|x_i - \frac{1}{4}\right|} u\left(\frac{1}{4}\right) + 2e^{\left|x_i - \frac{1}{2}\right|} u\left(\frac{1}{2}\right) + 2e^{\left|x_i - \frac{3}{4}\right|} u\left(\frac{3}{4}\right) + e^{\left|x_i - 1\right|} u(1) \right],$$

for each $i=1,\ldots,4$. The 5×5 linear system has solution $u(0)=-1.154255,\ u\left(\frac{1}{4}\right)=-0.9093298,\ u\left(\frac{1}{2}\right)=-0.7153145,\ u\left(\frac{3}{4}\right)=-0.5472949,\ \mathrm{and}\ u(1)=-0.3931261.$

(c) The Composite Simpson's rule gives

$$\int_{0}^{1} K(x_{i}, t)u(t) dt = \frac{h}{3} \left[K(x_{i}, 0)u(0) + 4K\left(x_{i}, \frac{1}{4}\right)u\left(\frac{1}{4}\right) + 2K\left(x_{i}, \frac{1}{2}\right)u\left(\frac{1}{2}\right) + 4K\left(x_{i}, \frac{3}{4}\right)u\left(\frac{3}{4}\right) + K(x_{i}, 1)u(1) \right],$$

which results in the linear equations

$$u(x_i) = x_i^2 + \frac{1}{12} \left[e^{x_i} u(0) + 4e^{\left|x_i - \frac{1}{4}\right|} u\left(\frac{1}{4}\right) + 2e^{\left|x_i - \frac{1}{2}\right|} u\left(\frac{1}{2}\right) + 4e^{\left|x_i - \frac{3}{4}\right|} u\left(\frac{3}{4}\right) + e^{\left|x_i - 1\right|} u(1) \right].$$

The 5 × 5 linear system has solutions u(0) = -1.234286, $u\left(\frac{1}{4}\right) = -0.9507292$, $u\left(\frac{1}{2}\right) = -0.7659400$, $u\left(\frac{3}{4}\right) = -0.5844737$, and u(1) = -0.4484975.