- 1. The Composite Simpson's rule gives:
 - (a) 0.5284163
 - (b) 4.266654
 - (c) 0.4329748
 - (d) 0.8802210
- 2. The Composite Simpson's Rule gives:
 - (a) 1.076163
 - (b) 20.07458
- 3. The Composite Simpson's rule gives:
 - (a) 0.4112649
 - (b) 0.2440679
 - (c) 0.05501681
 - (d) 0.2903746
- 4. The Composite Simpson's Rule gives:
 - (a) 1.1107218 with n = 16
 - (b) 0.58904782 with n = 12
- 5. The escape velocity is approximately 6.9450 mi/s.

6. The polynomial $L_n(x)$ has n distinct zeros in $[0, \infty)$. Let $x_1, ..., x_n$ be the n distinct zeros of L_n and define, for each i = 1, ..., n,

$$c_{n,i} = \int_0^\infty e^{-x} \prod_{\substack{j=1\\j\neq i}}^n \frac{(x-x_j)}{(x_i-x_j)} dx.$$

Let P(x) be any polynomial of degree n-1 or less, and let $P_{n-1}(x)$ be the (n-1)th Lagrange polynomial for P on the nodes $x_1, ..., x_n$. As in the proof of Theorem 4.7,

$$\int_0^\infty P(x)e^{-x} \ dx = \int_0^\infty P_{n-1}(x)e^{-x} \ dx = \sum_{i=1}^n c_{n,i}P(x_i),$$

so the quadrature formula is exact for polynomials of degree n-1 or less.

If P(x) has degree 2n-1 or less, then P(x) can be divided by the nth Laguerre polynomial $L_n(x)$ to obtain

$$P(x) = Q(x)L_n(x) + R(x),$$

where Q(x) and R(x) are both polynomials of degree less than n. As in proof of Theorem 4.7, the orthogonality of the Laguerre polynomials on $[0, \infty)$ implies that

$$Q(x) = \sum_{i=0}^{n-1} d_i L_i(x),$$

for some constants d_i .

Thus

$$\int_0^\infty e^{-x} P(x) \ dx = \int_0^\infty \sum_{i=0}^{n-1} d_i L_i(x) L_n(x) e^{-x} \ dx + \int_0^\infty e^{-x} R(x) \ dx$$

$$= \sum_{i=0}^{n-1} d_i \int_0^\infty L_i(x) L_n(x) e^{-x} \ dx + \sum_{i=1}^n c_{n,i} R(x_i)$$

$$= 0 + \sum_{i=1}^n c_{n,i} R(x_i) = \sum_{i=1}^n c_{n,i} R(x_i).$$

But

$$P(x_i) = Q(x_i)L_n(x_i) + R(x_i) = 0 + R(x_i) = R(x_i),$$

so

$$\int_0^\infty e^{-x} P(x) \ dx = \sum_{i=1}^n c_{n,i} P(x_i).$$

Hence the quadrature formula has degree of precision 2n-1.

7. With n=2 we have

$$\int_0^\infty e^{-x} f(x) dx \approx 0.8535534 f(0.5857864) + 0.1464466 f(3.4142136),$$

and with n=3 we have

$$\int_0^\infty e^{-x} f(x) \, dx \approx 0.7110930 f(0.4157746) + 0.2785177 f(2.2942804) + 0.0103893 f(6.2899451)$$

- 8. For n = 2 we have 0.9238795. For n = 3 we have 0.9064405.
- 9. For n = 2 we have 2.9865139. For n = 3 we have 2.9958198.