- 1. The Composite Trapezoidal rule approximations are:
 - (a) 0.639900
 - (b) 31.3653
 - (c) 0.784241
 - (d) -6.42872
 - (e) -13.5760
 - (f) 0.476977
 - (g) 0.605498
 - (h) 0.970926
- 2. The Composite Trapezoidal rule approximations and actual values are:

	Composite Trapezoidal Approximation	Actual Integral
(a) (b) (c) (d)	0.91193343 0.09363001 -0.66468785 0.36487225	0.92073549 0.08802039 -0.66293045 0.36423547

- 3. The Composite Simpson's rule approximations are:
 - (a) 0.99999998
 - (b) 1.9999999
 - (c) 2.2751458
 - (d) -19.646796
- 4. We have

	Composite Simpson's Approximation	Actual Integral
(a)	0.92088605	0.92073549
(b)	0.08809221	0.08802039
(c)	-0.66292308	-0.66293045
(d)	0.36423967	0.36423547

- 5. The Composite Midpoint rule approximations are:
 - (a) 0.633096
 - (b) 11.1568
 - (c) 0.786700
 - (d) -6.11274
 - (e) -14.9985
 - (f) 0.478751
 - (g) 0.602961
 - (h) 0.947868
- 6. We have

	Composite Midpoint Approximation	Actual Integral
(a)	0.92862909	0.92073549
(b)	0.08177145	0.08802039
(c)	-0.66067279	-0.66293045
(d)	0.36342511	0.36423547

- 7. (a) The Composite Trapezoidal rule approximation is 3.15947567.
 - (b) The Composite Simpson's rule approximation is 3.10933713.
 - (c) The Composite Midpoint rule approximation is 3.00906003.
- 8. (a) The Composite Trapezoidal rule approximation is 0.4215820.
 - (b) The Composite Simpson's rule approximation is 0.4227162.
 - (c) The Composite Midpoint rule approximation is 0.4249845.
- 9. $\alpha = 1.5$
- 10. f(-1) = 1, f(-0.5) = 2, f(0) = 6, f(0.5) = 3, f(1) = 1
- 11. (a) The Composite Trapezoidal rule requires h < 0.000922295 and $n \ge 2168$.
 - (b) The Composite Simpson's rule requires h < 0.037658 and $n \ge 54$.
 - (c) The Composite Midpoint rule requires h < 0.00065216 and $n \ge 3066$.
- 12. (a) The Composite Trapezoidal rule requires h < 0.0069669 and $n \ge 451$.
 - (b) The Composite Simpson's rule requires h < 0.132749 and $n \ge 24$.
 - (c) The Composite Midpoint rule requires h < 0.0049263 and $n \ge 636$.

- 13. (a) The Composite Trapezoidal rule requires h < 0.04382 and $n \ge 46$. The approximation is 0.405471.
 - (b) The Composite Simpson's rule requires h < 0.44267 and $n \ge 6$. The approximation is 0.405466.
 - (c) The Composite Midpoint rule requires h < 0.03098 and $n \ge 64$. The approximation is 0.405460.
- 14. (a) The Composite Trapezoidal rule requires h < 0.01095 and $n \ge 91$. With n = 91, the approximation is 0.6363013.
 - (b) The Composite Simpson's rule requires h < 0.173205 and $n \ge 6$. With n = 6, the approximation is 0.6362975.
 - (c) The Composite Midpoint rule requires h < 0.0077460 and n > 128. With n = 130, the approximation is 0.6362875.
- (a) Because the right and left limits at 0.1 and 0.2 for f, f', and f" are the same, the functions are continuous on [0,0.3]. However,

$$f'''(x) = \begin{cases} 6, & 0 \le x \le 0.1\\ 12, & 0.1 < x \le 0.2\\ 12, & 0.2 < x \le 0.3 \end{cases}$$

is discontinuous at x = 0.1.

- (b) We have 0.302506 with an error bound of 1.9×10^{-4} .
- (c) We have 0.302425, and the value of the actual integral is the same.
- 16. To show that the sum

$$\sum_{j=1}^{n/2} f^{(4)}(\xi_j) 2h$$

is a Riemann Sum, let $y_i = x_{2i}$, for $i = 0, 1, \dots, \frac{n}{2}$. Then $\Delta y_i = y_{i+1} - y_i = 2h$ and $y_{i-1} \le \xi_i \le y_i$. Thus,

$$\sum_{j=1}^{n/2} f^{(4)}(\xi_j) \Delta y_j = \sum_{j=1}^{n/2} f^{(4)}(\xi_j) 2h$$

is a Riemann Sum for $\int_a^b f^{(4)}(x)dx$. Hence

$$E(f) = -\frac{h^5}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_j) = -\frac{h^4}{180} \left[\sum_{j=1}^{n/2} f^{(4)}(\xi_j) 2h \right] \approx -\frac{h^4}{180} \int_a^b f^{(4)}(x) \, dx = -\frac{h^4}{180} \left[f'''(b) - f'''(a) \right].$$

(a) For the Composite Trapezoidal rule, we have

$$E(f) = -\frac{h^3}{12} \sum_{j=1}^n f''(\xi_j) = -\frac{h^2}{12} \sum_{j=1}^n f''(\xi_j) h = -\frac{h^2}{12} \sum_{j=1}^n f''(\xi_j) \Delta x_j,$$

where $\Delta x_j = x_{j+1} - x_j = h$ for each j. Since $\sum_{j=1}^n f''(\xi_j) \Delta x_j$ is a Riemann sum for $\int_a^b f''(x) dx = f'(b) - f'(a)$, we have

$$E(f) \approx -\frac{h^2}{12} [f'(b) - f'(a)].$$

(b) For the Composite Midpoint rule, we have

$$E(f) = \frac{h^3}{3} \sum_{i=1}^{n/2} f''(\xi_i) = \frac{h^2}{6} \sum_{i=1}^{n/2} f''(\xi_i)(2h).$$

But $\sum_{j=1}^{n/2} f''(\xi_j)(2h)$ is a Riemann sum for $\int_a^b f''(x) \ dx = f'(b) - f'(a)$, so

$$E(f) \approx \frac{h^2}{6} [f'(b) - f'(a)].$$

- 18. (a) Composite Trapezoidal Rule: With h = 0.0069669, the error estimate is 2.541×10^{-5} .
 - (b) Composite Simpson's Rule: With h = 0.132749, the error estimate is 3.252×10^{-5} .
 - (c) Composite Midpoint Rule: With h = 0.0049263, the error estimate is 2.541×10^{-5} .
- 19. (a) The estimate using the Composite Trapezoidal rule is $-\frac{1}{2}h^2 \ln 2 = -6.296 \times 10^{-6}$.
 - (b) The estimate using the Composite Simpson's rule is $-\frac{1}{240}h^2 = -3.75 \times 10^{-6}$.
 - (c) The estimate using the Composite Midpoint rule is $\frac{1}{6}h^2 \ln 2 = 6.932 \times 10^{-6}$.
- 20. (a) 0.68269822 obtained using n = 10 in Composite Simpson's rule.
 - (b) 0.95449101 obtained using n=14 in Composite Simpson's rule.
 - (c) 0.99729312 obtained using n=20 in Composite Simpson's rule.
- 21. The length is approximately 15.8655.
- The length of the track is approximately 9858 ft.
- 23. Composite Simpson's rule with h = 0.25 gives 2.61972 s.
- An approximation for T is 1054.694.
- 25. The length is approximately 58.47082, using n = 100 in the Composite Simpson's rule.

- 26. (a) For $p_0 = 0.5$, we have $p_6 = 1.644854$ with n = 20 in the Composite Simpson's rule.
 - (b) For $p_0 = 0.5$, we have $p_6 = 1.645085$ with n = 40 in the Composite Trapezoidal rule.