- (a) For p₀ = 1, we have p₂₂ = 2.69065.
 - (b) For $p_0 = 1$, we have $p_5 = 0.53209$; for $p_0 = -1$, we have $p_3 = -0.65270$; and for $p_0 = -3$, we have $p_3 = -2.87939$.
 - (c) For $p_0 = 1$, we have $p_5 = 1.32472$.
 - (d) For $p_0 = 1$, we have $p_4 = 1.12412$; and for $p_0 = 0$, we have $p_8 = -0.87605$.
 - (e) For $p_0 = 0$, we have $p_6 = -0.47006$; for $p_0 = -1$, we have $p_4 = -0.88533$; and for $p_0 = -3$, we have $p_4 = -2.64561$.
 - (f) For $p_0 = 0$, we have $p_{10} = 1.49819$.
- 2. (a) For $p_0 = 0$, we have $p_9 = -4.123106$; and for $p_0 = 3$, we have $p_6 = 4.123106$. The complex roots are $-2.5 \pm 1.322879i$.
 - (b) For $p_0 = 1$, we have $p_7 = -3.548233$; and for $p_0 = 4$, we have $p_5 = 4.38111$. The complex roots are $0.5835597 \pm 1.494188i$.
 - (c) The only roots are complex, and they are $\pm\sqrt{2}i$ and $-0.5\pm0.5\sqrt{3}i$.
 - (d) For $p_0 = 1$, we have $p_5 = -0.250237$; for $p_0 = 2$, we have $p_5 = 2.260086$; and for $p_0 = -11$, we have $p_6 = -12.612430$. The complex roots are $-0.1987094 \pm 0.8133125i$.
 - (e) For $p_0 = 0$, we have $p_8 = 0.846743$; and for $p_0 = -1$, we have $p_9 = -3.358044$. The complex roots are $-1.494350 \pm 1.744219i$.
 - (f) For $p_0 = 0$, we have $p_8 = 2.069323$; and for $p_0 = 1$, we have $p_3 = 0.861174$. The complex roots are $-1.465248 \pm 0.8116722i$.
 - (g) For $p_0 = 0$, we have $p_6 = -0.732051$; for $p_0 = 1$, we have $p_4 = 1.414214$; for $p_0 = 3$, we have $p_5 = 2.732051$; and for $p_0 = -2$, we have $p_6 = -1.414214$.
 - (h) For $p_0 = 0$, we have $p_5 = 0.585786$; for $p_0 = 2$, we have $p_2 = 3$; and for $p_0 = 4$, we have $p_6 = 3.414214$.

3. The following table lists the initial approximation and the roots.

	p_0	p_1	p_2	Approximate roots	Complex Conjugate roots
(a)	-1	0 1	1 2	$p_7 = -0.34532 - 1.31873i$ $p_6 = 2.69065$	-0.34532 + 1.31873i
(b)	$0 \\ 1 \\ -2$	$\begin{array}{c} 1 \\ 2 \\ -3 \end{array}$	$\begin{array}{c} 2 \\ 3 \\ -2.5 \end{array}$	$p_6 = 0.53209$ $p_9 = -0.65270$ $p_4 = -2.87939$	
(c)		1 -1	2 0	$p_5 = 1.32472$ $p_7 = -0.66236 - 0.56228i$	-0.66236 + 0.56228i
(d)	$\begin{array}{c} 0 \\ 2 \\ -2 \end{array}$	1 3 0	$\begin{array}{c} 2 \\ 4 \\ -1 \end{array}$	$p_5 = 1.12412$ $p_{12} = -0.12403 + 1.74096i$ $p_5 = -0.87605$	-0.12403 - 1.74096i
(e)	0 1 -1	$\begin{array}{c} 1 \\ 0 \\ -2 \end{array}$	-0.5	$p_{10} = -0.88533$ $p_5 = -0.47006$ $p_5 = -2.64561$	
(f)	0 -1 1	$\begin{array}{c} 1 \\ -2 \\ 0 \end{array}$		$p_6 = 1.49819$ $p_{10} = -0.51363 - 1.09156i$ $p_8 = 0.26454 - 1.32837i$	-0.51363 + 1.09156i $0.26454 + 1.32837i$

4. The following table lists the initial approximation and the roots.

	p_0	p_1	p_2	Approximate roots	Complex Conjugate roots
(a)	0 1 -3	1 2 -4	$\begin{array}{c} 2 \\ 3 \\ -5 \end{array}$	$p_{11} = -2.5 - 1.322876i$ $p_6 = 4.123106$ $p_5 = -4.123106$	-2.5 + 1.322876i
(b)	$0 \\ 2 \\ -2$	1 3 -3	$\begin{array}{c} 2 \\ 4 \\ -4 \end{array}$	$p_7 = 0.583560 - 1.494188i$ $p_6 = 4.381113$ $p_5 = -3.548233$	0.583560 + 1.494188i
(c)	0 -1	$\begin{array}{c} 1 \\ -2 \end{array}$	$\begin{array}{c} 2 \\ -3 \end{array}$	$p_{11} = 1.414214i$ $p_{10} = -0.5 + 0.866025i$	-1.414214i $-0.5 - 0.866025i$
(d)	0 3 11 -9	$\begin{array}{c} 1 \\ 4 \\ 12 \\ -10 \end{array}$	2 5 13 -11	$p_7 = 2.260086$ $p_{14} = -0.198710 + 0.813313i$ $p_{22} = -0.250237$ $p_6 = -12.612430$	-0.198710 + 0.813313i
(e)	$0 \\ 3 \\ -1$	$\begin{array}{c} 1 \\ 4 \\ -2 \end{array}$	$\begin{array}{c} 2 \\ 5 \\ -3 \end{array}$	$p_6 = 0.846743$ $p_{12} = -1.494349 + 1.744218i$ $p_7 = -3.358044$	-1.494349 - 1.744218i
(f)	0 -1 -1	$\begin{array}{c} 1 \\ 0 \\ -2 \end{array}$	$\begin{array}{c} 2 \\ 1 \\ -3 \end{array}$	$p_6 = 2.069323$ $p_5 = 0.861174$ $p_8 = -1.465248 + 0.811672i$	-1.465248 - 0.811672i
(g)	$\begin{array}{c} 0 \\ -2 \\ 0 \\ 2 \end{array}$	$ \begin{array}{c} 1 \\ -1 \\ -2 \\ 3 \end{array} $	$\begin{array}{c}2\\0\\-1\\4\end{array}$	$p_6 = 1.414214$ $p_7 = -0.732051$ $p_7 = -1.414214$ $p_6 = 2.732051$	
(h)	$0 \\ -1 \\ 2.5$	1 0 3.5	2 1 4	$p_8 = 3$ $p_5 = 0.585786$ $p_6 = 3.414214$	

- 5. (a) The roots are 1.244, 8.847, and -1.091, and the critical points are 0 and 6.
 - (b) The roots are 0.5798, 1.521, 2.332, and -2.432, and the critical points are 1, 2.001, and -1.5.
- 6. We get convergence to the root 0.27 with $p_0 = 0.28$. We need p_0 closer to 0.29 since $f'(0.28\overline{3}) = 0$.
- 7. Maple gives the only real zero as

$$\frac{(54+6\sqrt{129})^{2/3}-12}{3(54+6\sqrt{129})^{1/3}}\approx 0.8477075979.$$

8. Maple gives the only real zero as

$$\frac{(540+12\sqrt{1929})^{2/3}+24}{6(540+12\sqrt{1929})^{1/3}}\approx 2.094551482.$$

- The methods all find the solution 0.23235.
- 10. The width is approximately W = 16.2121 ft.
- The minimal material is approximately 573.64895 cm².
- 12. Fibonacci's answer was 1.3688081078532, and Newton's Method gives 1.36880810782137 with a tolerance of 10^{-16} , so Fibonacci's answer is within 4×10^{-11} . This accuracy is amazing for the time.