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For each part, f € C|a,b] on the given interval. Since f(a) and f(b) are of opposite sign, the
Intermediate Value Theorem implies that a number ¢ exists with f(c) = 0.

(a) [0,1]

(b] [011]| [455]1 [_110]

© [-2,-2/3], 0,1, 2.4

(d) [-3,-2], [-1,-0.5], and [-0.5,0]
For each part, f € C[a,b], f’ exists on (a,b) and f(a) = f(b) = 0. Rolle’s Theorem implies
that a number ¢ exists in (a,b) with f'(¢) = 0. For part (d), we can use [a,b] = [-1,0] or
[a,b] = [0,2].

The maximum value for |f(z)| is given below.

_—

(21n2)/3 ~ 0.4620081
0.8

5.164000

1.582572
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For z <0, f(z) < 2z+k < 0, provided that z < —3k. Similarly, for z > 0, f(z) > 2z+k > 0,
provided that = > —1k. By Theorem 1.11, there exists a number ¢ with f(c) = 0. If f(c) =0

and f(c') = 0 for some ¢’ # ¢, then by Theorem 1.7, there exists a number p between ¢ and ¢
with f'(p) = 0. However, f'(zx) =322 4+ 2 > 0 for all =.

Suppose p and g are in [a,b] with p # g and f(p) = f(g) = 0. By the Mean Value Theorem,
there exists £ € (a,b) with

flp) = fla) = F'(E)p—q)
But, f(p) — f(q) =0 and p # q. So f/'(£) = 0, contradicting the hypothesis.

(a) Py(z) =0

(b) R3(0.5) = 0.125; actual error = 0.125

(c) Po(z) =14 3(z— 1)+ 3(z —1)?

(d) R2(0.5) = —0.125; actual error = —0.125

Py(z) =1+ gz — 322 + fpo°

T 0.5 0.75 1.25 1.5
Ps(x) 1.2265625 1.3310547 1.5517578 1.6796875
vr+1 1.2247449 1.3228757 1.5 1.5811388

|[v/z+1— P3(z)] 0.0018176 0.0081790 0.0517578 0.0985487
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9. Since
—2ef(sin& 4 cos€) 4
T

Py(z)=14+z and Ra(z)= 5

for some £ between = and 0, we have the following:

(a) P(0.5) = 1.5 and |f(0.5) — P;(0.5)| < 0.0932;
(b) |f(z) — Pa(z)| < 1.252;
(c) JFD ) dz 1.5

(d) |an fl(z) dz — fu Pg( dr| < fﬂ |Ra(x)| dz < 0.313, and the actual error is 0.122.

10. Pa(z) = 1.461930+0.617884 (x — T)—0.844046 (z — Z)” and Ra(z) = —Lef(sin é+cosé) (z — X)°

for some £ between = and £.
(a) P3(0.5) = 1.446879 and f(0.5) = 1.446889. An error bound is 1.01 x 10~°, and the actual
error is 1.0 x 1075,
(b) |f(z) — Pa(z)] < 0.135372 on [0, 1]
(c) fnl Py(z) dr = 1.376542 and fc, ) dz = 1.378025
(d) An error bound is 7.403 x 10~ 3, Ell'ld the actual error is 1.483 x 1073,

11. Py(x) = —4 4 6z — 2% — 42%; P3(0.4) = —2.016
|R5(0.4)] < 0.05849; | £(0.4) — P5(0.4)| = 0.013365367
Py(x) = —4 + 6z — 2% — 42%; P4(0.4) = —2.016

|R4(0.4)] < 0.01366; | £(0.4) — P4(0.4)| = 0.013365367

(a)
(b)
()
(d)

12. Py(z) = (z—1)2 — 4(z — 1)

(a) P3(0.5) = 0.312500, f(0.5) = 0.346574. An error bound is 0.2916, and the actual error
1s 0.034074.

(b) |f(x) — Ps(x)| < 0.2916 on [0.5,1.5]

() Jo2 Pa(x) dz = 0.083, [7(x —1)Inz dz = 0.088020

(d) An error bound is 0.0583, and the actual error is 4.687 x 1073,

13. Py(x) =z +=°

(a) |f(z) — Py(x)| < 0.012405

(b) [ Py(z) dx = 0.0864, [* ze®” dz = 0.086755

(c) 8.27 x 10~

(d) P}(0.2) = 1.12, f/(0.2) = 1.124076. The actual error is 4.076 x 10,
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14.  First we need to convert the degree measure for the sine function to radians. We have 180° = 7
radians, so 1° = radians. Since,

l.Sﬂ
f(z)=sinz, f'(z)=rcosz, f"(z)=—smzx, and f"(z)=—cosc,
we have f(0) =0, f(0) =1, and f"”(0) = 0.

The approximation sinz & z is given by

f(z) ~ Py(z) =z, and Ra(x)= —%zg.

If we use the bound |cos&| < 1, then

T T T —cosE ;w3
sin 155~ 1501 = |7 (730) | = ‘—3! (10
15. Since 42° = 77 /30 radians, use zp = 7/4. Then

Tm
R,|l—] <

For |Rn{§—g)| < 1078, it suffices to take n = 3. To T digits,

< 886 x 107",

- i+l n
G-%) _ (0.053)
(n+4 1) (n+ 1) 7

cos42° = 0.7431448 and P3(42°) = Pg{%) — 0.7431446,

so the actual error is 2 x 1077,

—119 T 5 T
(4) .1:[2 e - x/2 -
F@) =qagge™ " sing + 57" cos g

20
‘ f[‘”(:c}‘ < | ff41(0.60473891)) < 0.09787176, for 0 <z <1,

and

Shﬁ Dmmﬂm

|f(z) — P3(z)] < Ei —(1)* = 0.004077990.

17. (a) Pi(z) =In(3) + 2(z — 1) + §(z — 1)2 — P(z - 1)?

(a) g 81

(b) mﬁmr:zalf(x) — Ps(z)| = | £(0) — P5(0) = 0.02663366

(c) Ps(x) =In(2) + 3z?

(@) maxosast [£(@) — Pala)] = 1£(1) — Py(1)] = 0.09453489

(e) P3(0) approximates f(0) better than P;(1) approximates f(1).
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18. P(z)=> 1 ozF, n>19

T 1 .

19. Po(z) =Y =z,
< k!

n=7T
k=

20. For nodd, Py(x) =z — 2% + 225 +--- + 1(—1)("~1/2z" For n even, P,(z) = P,_1(x).
21. A bound for the maximum error is 0.0026.

22. (a) P (zq) = f®(zq) for k =0,1,...,n. The shapes of P, and f are the same at .
(b) Pa(z) =3+ 4(x — 1)+ 3(z — 1)2.

23. (a) The assumption is that f(z;) = 0 for each i = 0,1,...,n. Applying Rolle’s Theorem
on each on the intervals [z;, ziy1] implies that for each i = 0,1,...,n — 1 there exists a
number z; with f/(z;) = 0. In addition, we have

a<Ip << T <2< "< Zp_1 < Ty < b

(b) Apply the logic in part (a) to the function g(x) = f'(z) with the number of zeros of g in
[a,b] reduced by 1. This implies that numbers w;, for i = 0,1,..., n — 2 exist with

g (wi) = f'(wi) =0, and a<zp<wp <zt <wi <-- Wp—z < zn—1 <b.
(¢) Continuing by induction following the logic in parts (a) and (b) provides n+1— j distinct
zeros of fU) in [a,b].
(d) The conclusion of the theorem follows from part (c) when j = n, for in this case there
will be (at least) (n + 1) — n = 1 zero in [a, b].

24. First observe that for f(z) = z — sinz we have f'(z) = 1 —cosz > 0, because —1 < cosz < 1
for all values of z. Also, the statement clearly holds when |z| > 7, because |sinz| < 1.

(a) The observation implies that f(x) is non-decreasing for all values of z, and in particular
that f(z) > f(0) = 0 when =z > 0. Hence for z > 0, we have z > sinz, and when
0<z<m |sinz| =sinr < =|z|.

(b) When —7 < = < 0, we have # > —z > 0. Since sinz is an odd function, the fact (from
part (a)) that sin(—x) < (—z) implies that |sinz| = —sinz < —z = |z|.

As a consequence, for all real numbers = we have |sinz| < |z|.

25. Since Ry(1) = %ef, for some £ in (0,1), we have |E — Ry(1)| = 2|1 — €| < 1(e - 1).
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26. (a) Use the series

K 1yvke2k T
et = Z (1) to integrate —f et dt,
k=0 k! T Jo
and obtain the result.
(b) We have
VAP Sh v vy v L A 7 & +]

k=0

N+ st — —2T —2% -

[ 2 4 8 16
3 15 105 945

2 1, 1 . 1 . 1 4 B
\—E_z—g.:c —I—E:c T +m$ —I—} = erf (z)

(c) 0.8427008
(d) 0.8427069

(e) The series in part (a) is alternating, so for any positive integer n and positive = we have

the bound
_1)kg2ktl

2 o (
erf(x) _TE;::D (2k + 1)k!

We have no such bound for the positive term series in part (b).

$2n+3

(2n+3)(n+1)!°

27. (a) Let zg be any number in [a,b]. Given € > 0, let d = ¢/L. If |z —zp| < §d and a < = < b,
then |f(z) — f(z0)| < Llz — 0| <e.
(b) Using the Mean Value Theorem, we have
|f(z2) — flz)| = [F(Ellz2 — =4l
for some £ between z1 and x2, so
|f(z2) — f(z1)| < L|z2 — z4].
(c) One example is f(z) = z}/? on [0, 1].
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28.  (a) The number %(f(z1) + f(z2)) is the average of f(z1) and f(z2), so it lies between these
two values of f. By the Intermediate Value Theorem 1.11 there exist a number £ between
x1 and x9 with

16 = 5(F(n) + 1(22) = 5f(er) + 5 (xa).
(b) Let m = min{f(z1), f(z2)} and M = max{f(z1), f(z2)}. Then m < f(z1) < M and
m < f(zz) <M, so
crm < eyf(ry) <eyM  and  epm < epf(x2) < oM.
Thus
(e1 +e2)m < erf(x1) + caf(z2) < (e1 + c2) M

and
m< ceif(z1) +eaf(za) _ 0
cp + €a

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints xy and
Tg, there exists a number ¢ between z; and x5 for which
ciflx1) +caflxa
16 = ) + afaa)

ci1 + €2

(c) Let f(x) =22+ 1,21 =0, 293 =1, ¢; =2, and ¢3 = —1. Then for all values of =,

cif(z1) +eaf(z2)  2(1) —1(2)
c1+ o o 2—-1

f(z) >0 but =0.
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29. (a) Since f is continuous at p and f(p) # 0, there exists a § > 0 with

17)— 1) < L2

for |t — p| < d and a < T < b. We restrict 4 so that [p — §,p + d] is a subset of [a,b].
Thus, for = € [p— 4, p+ 8], we have = € [a,b]. So

O ¢ o) 5y < LD ana pp) - L2 < iy < gy + LU
If f(p) > 0, then
f(P)—@=% >0, so f(z) >f{p)—@>0-
If f(p) <0, then |(p)| = —f(p), and
1@ < 1) + L2y LB TB) g

In either case, f(z) #0, for z € [p—4,p + 4]
(b) Since f is continuous at p and f(p) = 0, there exists a § > 0 with

If(z) — f(p)| <k, for |z—p|<d and a<z<b.

We restrict 4 so that [p— 8, p+ 4] is a subset of [a,b]. Thus, for = € [p— 4, p+ 4], we have

|f(=)| = (=) - fp)| <.
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