- 1. For each part, $f \in C[a, b]$ on the given interval. Since f(a) and f(b) are of opposite sign, the Intermediate Value Theorem implies that a number c exists with f(c) = 0.
- 2. (a) [0,1]
 - (b) [0,1], [4,5], [-1,0]
 - (c) [-2, -2/3], [0, 1], [2, 4]
 - (d) [-3, -2], [-1, -0.5], and [-0.5, 0]
- 3. For each part, $f \in C[a, b]$, f' exists on (a, b) and f(a) = f(b) = 0. Rolle's Theorem implies that a number c exists in (a, b) with f'(c) = 0. For part (d), we can use [a, b] = [-1, 0] or [a, b] = [0, 2].
- 4. The maximum value for |f(x)| is given below.
 - (a) $(2 \ln 2)/3 \approx 0.4620981$
 - (b) 0.8
 - (c) 5.164000
 - (d) 1.582572
- 5. For x < 0, f(x) < 2x + k < 0, provided that $x < -\frac{1}{2}k$. Similarly, for x > 0, f(x) > 2x + k > 0, provided that $x > -\frac{1}{2}k$. By Theorem 1.11, there exists a number c with f(c) = 0. If f(c) = 0 and f(c') = 0 for some $c' \neq c$, then by Theorem 1.7, there exists a number p between c and c' with f'(p) = 0. However, $f'(x) = 3x^2 + 2 > 0$ for all x.
- 6. Suppose p and q are in [a,b] with $p \neq q$ and f(p) = f(q) = 0. By the Mean Value Theorem, there exists $\xi \in (a,b)$ with

$$f(p) - f(q) = f'(\xi)(p - q).$$

But, f(p) - f(q) = 0 and $p \neq q$. So $f'(\xi) = 0$, contradicting the hypothesis.

- 7. (a) $P_2(x) = 0$
 - (b) $R_2(0.5) = 0.125$; actual error = 0.125
 - (c) $P_2(x) = 1 + 3(x-1) + 3(x-1)^2$
 - (d) $R_2(0.5) = -0.125$; actual error = -0.125
- 8. $P_3(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3$

\boldsymbol{x}	0.5	0.75	1.25	1.5
$ \begin{array}{c} P_3(x) \\ \sqrt{x+1} \\ \sqrt{x+1} - P_3(x) \end{array} $	1.2247449	1.3310547 1.3228757 0.0081790	1.5	1.5811388

9. Since

$$P_2(x) = 1 + x$$
 and $R_2(x) = \frac{-2e^{\xi}(\sin \xi + \cos \xi)}{6}x^3$

for some ξ between x and 0, we have the following:

- (a) $P_2(0.5) = 1.5$ and $|f(0.5) P_2(0.5)| \le 0.0932$;
- (b) $|f(x) P_2(x)| \le 1.252$;
- (c) $\int_0^1 f(x) dx \approx 1.5$;
- (d) $\left| \int_0^1 f(x) \ dx \int_0^1 P_2(x) \ dx \right| \le \int_0^1 \left| R_2(x) \right| dx \le 0.313$, and the actual error is 0.122.
- 10. $P_2(x) = 1.461930 + 0.617884 \left(x \frac{\pi}{6}\right) 0.844046 \left(x \frac{\pi}{6}\right)^2$ and $R_2(x) = -\frac{1}{3}e^{\xi}(\sin \xi + \cos \xi) \left(x \frac{\pi}{6}\right)^3$ for some ξ between x and $\frac{\pi}{6}$.
 - (a) $P_2(0.5) = 1.446879$ and f(0.5) = 1.446889. An error bound is 1.01×10^{-5} , and the actual error is 1.0×10^{-5} .
 - (b) $|f(x) P_2(x)| \le 0.135372$ on [0, 1]
 - (c) $\int_0^1 P_2(x) dx = 1.376542$ and $\int_0^1 f(x) dx = 1.378025$
 - (d) An error bound is 7.403×10^{-3} , and the actual error is 1.483×10^{-3} .
- 11. (a) $P_3(x) = -4 + 6x x^2 4x^3$; $P_3(0.4) = -2.016$
 - (b) $|R_3(0.4)| \le 0.05849$; $|f(0.4) P_3(0.4)| = 0.013365367$
 - (c) $P_4(x) = -4 + 6x x^2 4x^3$; $P_4(0.4) = -2.016$
 - (d) $|R_4(0.4)| \le 0.01366$; $|f(0.4) P_4(0.4)| = 0.013365367$
- 12. $P_3(x) = (x-1)^2 \frac{1}{2}(x-1)^3$
 - (a) $P_3(0.5) = 0.312500$, f(0.5) = 0.346574. An error bound is $0.291\overline{6}$, and the actual error is 0.034074.
 - (b) $|f(x) P_3(x)| \le 0.291\overline{6}$ on [0.5, 1.5]
 - (c) $\int_{0.5}^{1.5} P_3(x) dx = 0.08\overline{3}, \int_{0.5}^{1.5} (x-1) \ln x dx = 0.088020$
 - (d) An error bound is $0.058\overline{3}$, and the actual error is 4.687×10^{-3} .
- 13. $P_4(x) = x + x^3$
 - (a) $|f(x) P_4(x)| \le 0.012405$
 - (b) $\int_0^{0.4} P_4(x) dx = 0.0864$, $\int_0^{0.4} xe^{x^2} dx = 0.086755$
 - (c) 8.27×10^{-4}
 - (d) $P'_4(0.2) = 1.12$, f'(0.2) = 1.124076. The actual error is 4.076×10^{-3} .

14. First we need to convert the degree measure for the sine function to radians. We have $180^{\circ} = \pi$ radians, so $1^{\circ} = \frac{\pi}{180}$ radians. Since,

$$f(x) = \sin x$$
, $f'(x) = \cos x$, $f''(x) = -\sin x$, and $f'''(x) = -\cos x$,

we have f(0) = 0, f'(0) = 1, and f''(0) = 0.

The approximation $\sin x \approx x$ is given by

$$f(x) \approx P_2(x) = x$$
, and $R_2(x) = -\frac{\cos \xi}{3!}x^3$.

If we use the bound $|\cos \xi| \le 1$, then

$$\left|\sin\frac{\pi}{180} - \frac{\pi}{180}\right| = \left|R_2\left(\frac{\pi}{180}\right)\right| = \left|\frac{-\cos\xi}{3!}\left(\frac{\pi}{180}\right)^3\right| \le 8.86 \times 10^{-7}.$$

15. Since $42^{\circ} = 7\pi/30$ radians, use $x_0 = \pi/4$. Then

$$\left| R_n \left(\frac{7\pi}{30} \right) \right| \le \frac{\left(\frac{\pi}{4} - \frac{7\pi}{30} \right)^{n+1}}{(n+1)!} < \frac{(0.053)^{n+1}}{(n+1)!}.$$

For $|R_n(\frac{7\pi}{30})| < 10^{-6}$, it suffices to take n = 3. To 7 digits,

$$\cos 42^{\circ} = 0.7431448$$
 and $P_3(42^{\circ}) = P_3(\frac{7\pi}{30}) = 0.7431446$,

so the actual error is 2×10^{-7} .

- 16. (a) $P_3(x) = \frac{1}{3}x + \frac{1}{6}x^2 + \frac{23}{648}x^3$
 - (b) We have

$$f^{(4)}(x) = \frac{-119}{1296} e^{x/2} \sin \frac{x}{3} + \frac{5}{54} e^{x/2} \cos \frac{x}{3},$$

so

$$\left| f^{(4)}(x) \right| \le \left| f^{(4)}(0.60473891) \right| \le 0.09787176, \text{ for } 0 \le x \le 1,$$

and

$$|f(x) - P_3(x)| \le \frac{|f^{(4)}(\xi)|}{4!}|x|^4 \le \frac{0.09787176}{24}(1)^4 = 0.004077990.$$

- 17. (a) $P_3(x) = \ln(3) + \frac{2}{3}(x-1) + \frac{1}{9}(x-1)^2 \frac{10}{81}(x-1)^3$
 - (b) $\max_{0 \le x \le 1} |f(x) P_3(x)| = |f(0) P_3(0)| = 0.02663366$
 - (c) $\tilde{P}_3(x) = \ln(2) + \frac{1}{2}x^2$
 - (d) $\max_{0 \le x \le 1} |f(x) \tilde{P}_3(x)| = |f(1) \tilde{P}_3(1)| = 0.09453489$
 - (e) $P_3(0)$ approximates f(0) better than $\tilde{P}_3(1)$ approximates f(1).

18.
$$P_n(x) = \sum_{k=0}^n x^k, \ n \ge 19$$

19.
$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k, \ n \ge 7$$

- 20. For n odd, $P_n(x) = x \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + \frac{1}{n}(-1)^{(n-1)/2}x^n$. For n even, $P_n(x) = P_{n-1}(x)$.
- 21. A bound for the maximum error is 0.0026.
- 22. (a) $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ for $k = 0, 1, \dots, n$. The shapes of P_n and f are the same at x_0 .
 - (b) $P_2(x) = 3 + 4(x-1) + 3(x-1)^2$.
- 23. (a) The assumption is that $f(x_i) = 0$ for each i = 0, 1, ..., n. Applying Rolle's Theorem on each on the intervals $[x_i, x_{i+1}]$ implies that for each i = 0, 1, ..., n-1 there exists a number z_i with $f'(z_i) = 0$. In addition, we have

$$a \le x_0 < z_0 < x_1 < z_1 < \dots < z_{n-1} < x_n \le b.$$

(b) Apply the logic in part (a) to the function g(x) = f'(x) with the number of zeros of g in [a, b] reduced by 1. This implies that numbers w_i , for i = 0, 1, ..., n-2 exist with

$$g'(w_i) = f''(w_i) = 0$$
, and $a < z_0 < w_0 < z_1 < w_1 < \dots < w_{n-2} < z_{n-1} < b$.

- (c) Continuing by induction following the logic in parts (a) and (b) provides n+1-j distinct zeros of $f^{(j)}$ in [a,b].
- (d) The conclusion of the theorem follows from part (c) when j = n, for in this case there will be (at least) (n+1) n = 1 zero in [a, b].
- 24. First observe that for $f(x) = x \sin x$ we have $f'(x) = 1 \cos x \ge 0$, because $-1 \le \cos x \le 1$ for all values of x. Also, the statement clearly holds when $|x| \ge \pi$, because $|\sin x| \le 1$.
 - (a) The observation implies that f(x) is non-decreasing for all values of x, and in particular that f(x) > f(0) = 0 when x > 0. Hence for $x \ge 0$, we have $x \ge \sin x$, and when $0 \le x \le \pi$, $|\sin x| = \sin x \le x = |x|$.
 - (b) When $-\pi < x < 0$, we have $\pi \ge -x > 0$. Since $\sin x$ is an odd function, the fact (from part (a)) that $\sin(-x) \le (-x)$ implies that $|\sin x| = -\sin x \le -x = |x|$. As a consequence, for all real numbers x we have $|\sin x| \le |x|$.
- 25. Since $R_2(1) = \frac{1}{6}e^{\xi}$, for some ξ in (0,1), we have $|E R_2(1)| = \frac{1}{6}|1 e^{\xi}| \le \frac{1}{6}(e-1)$.

26. (a) Use the series

$$e^{-t^2} = \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{k!}$$
 to integrate $\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$,

and obtain the result.

(b) We have

$$\frac{2}{\sqrt{\pi}}e^{-x^2} \sum_{k=0}^{\infty} \frac{2^k x^{2k+1}}{1 \cdot 3 \cdots (2k+1)} = \frac{2}{\sqrt{\pi}} \left[1 - x^2 + \frac{1}{2}x^4 - \frac{1}{6}x^7 + \frac{1}{24}x^8 + \cdots \right]$$

$$\cdot \left[x + \frac{2}{3}x^3 + \frac{4}{15}x^5 + \frac{8}{105}x^7 + \frac{16}{945}x^9 + \cdots \right]$$

$$= \frac{2}{\sqrt{\pi}} \left[x - \frac{1}{3}x^3 + \frac{1}{10}x^5 - \frac{1}{42}x^7 + \frac{1}{216}x^9 + \cdots \right] = \text{erf } (x)$$

- (c) 0.8427008
- (d) 0.8427069
- (e) The series in part (a) is alternating, so for any positive integer n and positive x we have the bound

$$\left| \operatorname{erf}(x) - \frac{2}{\sqrt{\pi}} \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)k!} \right| < \frac{x^{2n+3}}{(2n+3)(n+1)!} .$$

We have no such bound for the positive term series in part (b).

- 27. (a) Let x_0 be any number in [a, b]. Given $\epsilon > 0$, let $\delta = \epsilon/L$. If $|x x_0| < \delta$ and $a \le x \le b$, then $|f(x) f(x_0)| \le L|x x_0| < \epsilon$.
 - (b) Using the Mean Value Theorem, we have

$$|f(x_2) - f(x_1)| = |f'(\xi)||x_2 - x_1|,$$

for some ξ between x_1 and x_2 , so

$$|f(x_2) - f(x_1)| \le L|x_2 - x_1|.$$

(c) One example is $f(x) = x^{1/3}$ on [0, 1].

28. (a) The number $\frac{1}{2}(f(x_1) + f(x_2))$ is the average of $f(x_1)$ and $f(x_2)$, so it lies between these two values of f. By the Intermediate Value Theorem 1.11 there exist a number ξ between x_1 and x_2 with

$$f(\xi) = \frac{1}{2}(f(x_1) + f(x_2)) = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

(b) Let $m = \min\{f(x_1), f(x_2)\}$ and $M = \max\{f(x_1), f(x_2)\}$. Then $m \leq f(x_1) \leq M$ and $m \leq f(x_2) \leq M$, so

$$c_1 m \le c_1 f(x_1) \le c_1 M$$
 and $c_2 m \le c_2 f(x_2) \le c_2 M$.

Thus

$$(c_1 + c_2)m \le c_1 f(x_1) + c_2 f(x_2) \le (c_1 + c_2)M$$

and

$$m \le \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le M.$$

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x_1 and x_2 , there exists a number ξ between x_1 and x_2 for which

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

(c) Let $f(x) = x^2 + 1$, $x_1 = 0$, $x_2 = 1$, $x_1 = 2$, and $x_2 = -1$. Then for all values of x,

$$f(x) > 0$$
 but $\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = \frac{2(1) - 1(2)}{2 - 1} = 0.$

29. (a) Since f is continuous at p and $f(p) \neq 0$, there exists a $\delta > 0$ with

$$|f(x) - f(p)| < \frac{|f(p)|}{2},$$

for $|x-p| < \delta$ and a < x < b. We restrict δ so that $[p-\delta, p+\delta]$ is a subset of [a,b]. Thus, for $x \in [p-\delta, p+\delta]$, we have $x \in [a,b]$. So

$$-\frac{|f(p)|}{2} < f(x) - f(p) < \frac{|f(p)|}{2} \quad \text{and} \quad f(p) - \frac{|f(p)|}{2} < f(x) < f(p) + \frac{|f(p)|}{2}.$$

If f(p) > 0, then

$$f(p) - \frac{|f(p)|}{2} = \frac{f(p)}{2} > 0$$
, so $f(x) > f(p) - \frac{|f(p)|}{2} > 0$.

If f(p) < 0, then |f(p)| = -f(p), and

$$f(x) < f(p) + \frac{|f(p)|}{2} = f(p) - \frac{f(p)}{2} = \frac{f(p)}{2} < 0.$$

In either case, $f(x) \neq 0$, for $x \in [p - \delta, p + \delta]$.

(b) Since f is continuous at p and f(p) = 0, there exists a $\delta > 0$ with

$$|f(x) - f(p)| < k$$
, for $|x - p| < \delta$ and $a < x < b$.

We restrict δ so that $[p-\delta, p+\delta]$ is a subset of [a,b]. Thus, for $x \in [p-\delta, p+\delta]$, we have

$$|f(x)| = |f(x) - f(p)| < k.$$