Numerical Analysis I, Fall 2014 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 03

Nov 14, 2014.

- 1. Give (need not derive) an approximation of f''(x) from f(x-h), f(x) and f(x+h). Then derive an error identity of the form $f''(x) - f''_h(x) = C_1 f^{(n)}(\xi) h^{n+k}$.
- 2. Derive a fourth order approximation of f'(x) from f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots .
- 3. At least how many points among f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots are needed to approximate $f^{(4)}(x)$? What is the order of the truncation error p in $f^{(4)}(x) f_h^{(4)}(x) = O(h^p)$? Explain. You could give your answer with or without explicitly finding the coefficients of f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots .
- 4. Suppose that $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots$ and $N_1(h)$, $N_1(h/2)$, $N_1(h/4)$ are given. Construct $N_3(h)$ using an extrapolation table or line by line derivation. What is the order of accuracy for $N_3(h)$?

Numerical Analysis I, Fall 2014 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 03

Nov 14, 2014.

- 1. Give (need not derive) an approximation of f''(x) from f(x-h), f(x) and f(x+h). Then derive an error identity of the form $f''(x) - f''_h(x) = C_1 f^{(n)}(\xi) h^{n+k}$.
- 2. Derive a fourth order approximation of f'(x) from f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots .
- 3. At least how many points among f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots are needed to approximate $f^{(4)}(x)$? What is the order of the truncation error p in $f^{(4)}(x) - f_h^{(4)}(x) = O(h^p)$? Explain. You could give your answer with or without explicitly finding the coefficients of f(x), $f(x \pm h)$, $f(x \pm 2h)$, $f(x \pm 3h)$, \cdots .
- 4. Suppose that $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots$ and $N_1(h)$, $N_1(h/2)$, $N_1(h/4)$ are given. Construct $N_3(h)$ using an extrapolation table or line by line derivation. What is the order of accuracy for $N_3(h)$?