Quiz 02

Oct 18, 2011.

- 1. Suppose that $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots$ and $N_1(h) = 1.570796$, $N_1(h/2) = 1.896119$, $N_1(h/4) = 1.974232$. Construct an extrapolation table and determine $N_3(h)$.
- 2. What is the rate of convergence of N(h) if N(h) = 0.486748, N(h/3) = 0.45788 and N(h/9) = 0.452324?
- 3. Estimate h or n such that the composite Trapezoidal rule for $\int_1^2 \cos(x^2) dx$ has absolute error less than 10^{-5} . Then give your numerical value I_h with the n you obtained (program it and write down your answer).
- 4. Write down Simpson's formula for $\int_{-h}^{h} f(x)dx$. Need not derive or prove anything. If you don't remember and decide to derive, put on details.
- 5. A quadrature rule takes the form $\int_{-h}^{h} f(x)dx \approx 2h\left(\alpha_{-}f(\frac{-h}{2}) + \alpha_{+}f(\frac{h}{2})\right)$. Find α_{-} and α_{+} that gives the largest degree of precision. Then derive (prove) an error bound for the resulting scheme. (Need not give error identity)

Numerical Analysis I, Fall 2011 (http://www.math.nthu.edu.tw/~wangwc/)

Quiz 02

Oct 18, 2011.

- 1. Suppose that $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + \cdots$ and $N_1(h) = 1.570796$, $N_1(h/2) = 1.896119$, $N_1(h/4) = 1.974232$. Construct an extrapolation table and determine $N_3(h)$.
- 2. What is the rate of convergence of N(h) if N(h) = 0.486748, N(h/3) = 0.45788 and N(h/9) = 0.452324?
- 3. Estimate h or n such that the composite Trapezoidal rule for $\int_1^2 \cos(x^2) dx$ has absolute error less than 10^{-5} . Then give your numerical value I_h with the n you obtained (program it and write down your answer).
- 4. Write down Simpson's formula for $\int_{-h}^{h} f(x)dx$. Need not derive or prove anything. If you don't remember and decide to derive, put on details.
- 5. A quadrature rule takes the form $\int_{-h}^{h} f(x)dx \approx 2h\left(\alpha_{-}f(\frac{-h}{2}) + \alpha_{+}f(\frac{h}{2})\right)$. Find α_{-} and α_{+} that gives the largest degree of precision. Then derive (prove) an error bound for the resulting scheme. (Need not give error identity)