% This is a LaTex file. % Homework for the undergraduate course "Numerical Analysus I", % Spring semester, 2010, Wei-Cheng Wang. \documentclass[12pt]{article} % The page format, somewhat wider and taller page than in art12.sty. \topmargin -0.1in \headsep 0in \textheight 8.9in \footskip 0.6in \oddsidemargin 0in \evensidemargin 0in \textwidth 6.5in \usepackage{amsfonts,amssymb,amstext} \begin{document} \thispagestyle{empty} % The title and header. \noindent {\scriptsize Numerical Analysis I, Fall 2010 (http://www.math.nthu.edu.tw/\~\,wangwc/)} \hfill \begin{center} \large Quiz 01 \normalsize \end{center} \noindent Oct 01, 2010. % \vspace{.3in} % \bigskip % The questions! \begin{enumerate} \item How many "bits" does it take to store a floating point number in the range $$ \pm 1.a_1 a_2 \cdots a_s \times 2^e $$ with $s=33$, $a_j \in \{0,1\}$, $-511 \leq e \leq 512$? \item (programming) Find first 15 digits of $\sqrt{100002}-\sqrt{100001}$. You need to write down your method on the answer sheet. You can use any program on the computer and then copy your answer to the answer sheet. % \item % Show that % $$ % \text{Rel}(x_A/y_A) = % {\text{Rel}(x_A) - \text{Rel}(y_A) \over 1 - \text{Rel}(y_A) } % $$ \item Give the rate of convergence of the following limits $$ ({\rm a}): \lim_{h\to 0} {\sin h \over h} = 0 \qquad ({\rm b}): \lim_{h\to 0} {\sin h \over h} = 0 $$ \item Find a numerical answer of $x^3 + x - 3 = 0$. Make sure to check your method converges. %provide sample code \end{enumerate} \vspace{2.0in} \noindent {\scriptsize Numerical Analysis I, Fall 2009 (http://www.math.nthu.edu.tw/\~\,wangwc/)} \hfill \begin{center} \large Quiz 02 \normalsize \end{center} \noindent Oct 16, 2009. % \vspace{.3in} % \bigskip % The questions! \begin{enumerate} \item Propose a method of computing $\sin(1.00001)-\sin(1)$ to prevent loss of accuracy. \item How many "bits" does it take to store a floating point number in the range $$ \pm 1.d_1 d_2 \cdots d_s \times 2^e $$ with $s=33$, $d_j \in \{0,1\}$, $-509 \leq e \leq 512$? %% \item %% Show that %% $$ %% \text{Rel}(x_A/y_A) = %% {\text{Rel}(x_A) - \text{Rel}(y_A) \over 1 - \text{Rel}(y_A) } %% $$ \item Describe the Newton's method for finding $\sqrt[3]{2}$. \item Describe the secant method for finding $\sqrt[3]{2}$. \item Give a fixed point iteration for solving $x^3 - 3 = 0$. Make sure to check your method converges. \end{enumerate} \end{document}