% HOUSEHOLDER'S ALGORITHM 9.5 % % To obtain a symmetric tridiagonal matrix A(n-1) similar % to the symmetric matrix A = A(1), construct the following % matrices A(2),A(3),...,A(n-1) where A(K) = A(I,J)**K, for % each K = 1,2,...,n-1: % % INPUT: Dimension n; matrix A. % % OUTPUT: A(n-1) (At each step, A can be overwritten.) syms('OK', 'AA', 'NAME', 'INP', 'N', 'I', 'J', 'A', 'K'); syms('Q', 'KK', 'S', 'RSQ', 'V', 'U', 'PROD', 'Z'); syms('L', 'FLAG', 'OUP'); TRUE = 1; FALSE = 0; fprintf(1,'This is the Householder Method.\n'); OK = FALSE; fprintf(1,'The symmetric array A will be input from a text file\n'); fprintf(1,'in the order:\n'); fprintf(1,' A(1,1), A(1,2), A(1,3), ..., A(1,n),\n'); fprintf(1,' A(2,2), A(2,3), ..., A(2,n),\n'); fprintf(1,' A(3,3), ..., A(3,n),\n'); fprintf(1,' ..., A(n,n)\n\n'); fprintf(1,'Place as many entries as desired on each line, but separate '); fprintf(1,'entries with\n'); fprintf(1,'at least one blank.\n\n\n'); fprintf(1,'Has the input file been created? - enter Y or N.\n'); AA = input(' ','s'); if AA == 'Y' | AA == 'y' fprintf(1,'Input the file name in the form - drive:name.ext\n'); fprintf(1,'for example: A:DATA.DTA\n'); NAME = input(' ','s'); INP = fopen(NAME,'rt'); OK = FALSE; while OK == FALSE fprintf(1,'Input the dimension n.\n'); N = input(' '); if N > 1 A = zeros(N,N); U = zeros(1,N); V = zeros(1,N); Z = zeros(1,N); for I = 1 : N for J = I : N A(I,J) = fscanf(INP, '%f',1); A(J,I) = A(I,J); end; end; fclose(INP); OK = TRUE; else fprintf(1,'Dimension must be greater than 1.\n'); end; end; else fprintf(1,'The program will end so the input file can be created.\n'); end; if OK == TRUE % STEP 1 for K = 1 : N-2 Q = 0; KK = K+1; % STEP 2 for I = KK : N Q = Q+A(I,K)*A(I,K); end; % STEP 3 % S is used in place of alpha. if abs(A(K+1,K)) <= 1.0e-20 S = sqrt(Q); else S = A(K+1,K)/abs(A(K+1,K))*sqrt(Q); end; % STEP 4 RSQ = (S+A(K+1,K))*S; % STEP 5 V(K) = 0; V(K+1) = A(K+1,K)+S; for J = K+2 : N V(J) = A(J,K); end; % STEP 6 for J = K : N U(J) = 0; for I = KK : N U(J) = U(J)+A(J,I)*V(I); end; U(J) = U(J)/RSQ; end; % STEP 7 PROD = 0; for I = K+1 : N PROD = PROD + V(I)*U(I); end; % STEP 8 for J = K : N Z(J) = U(J) - 0.5*PROD*V(J)/RSQ; end; % STEP 9 for L = K+1 : N-1 % STEP 10 for J = L+1 : N A(J,L) = A(J,L)-V(L)*Z(J)-V(J)*Z(L); A(L,J) = A(J,L); end; % STEP 11 A(L,L) = A(L,L) - 2*V(L)*Z(L); end; % STEP 12 A(N,N) = A(N,N)-2*V(N)*Z(N); % STEP 13 for J = K+2 : N A(K,J) = 0; A(J,K) = 0; end; % STEP 14 A(K+1,K) = A(K+1,K)-V(K+1)*Z(K); A(K,K+1) = A(K+1,K); end; % STEP 15 fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Please enter 1 or 2.\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:name.ext\n'); fprintf(1,'for example A:OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'HOUSEHOLDER METHOD\n\n'); fprintf(OUP, 'The similar tridiagonal matrix follows - output by rows\n\n'); for I = 1 : N for J = 1 : N fprintf(OUP, ' %11.8f', A(I,J)); end; fprintf(OUP, '\n\n'); end; if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end; end;