% CHEBYSHEV RATIONAL APPROXIMATION ALGORITHM 8.2 % % To obtain the rational approximation % % rT(x) = (p0*T0 + p1*T1 +...+ pn*Tn) / (q0*T0 + q1*T1 +...+ qm*Tm) % % for a given function f(x): % % INPUT nonnegative integers m and n. % % OUTPUT coefficients q0, q1, ... , qm, p0, p1, ... , pn. % % The coefficients of the Chebyshev expansion a0, a1, ..., aN could % be calculated instead of input as is assumed in this program. syms('OK', 'LM', 'LN', 'BN', 'FLAG', 'I', 'AA', 'AAA', 'NAME'); syms('INP', 'N', 'M', 'NROW', 'NN', 'Q', 'J', 'A', 'PP', 'IMAX'); syms('AMAX', 'JJ', 'IP', 'JP', 'NCOPY', 'I1', 'J1', 'XM', 'K'); syms('N1', 'N2', 'SUM', 'KK', 'LL', 'P', 'OUP'); TRUE = 1; FALSE = 0; fprintf(1,'This is Chebyshev Rational Approximation.\n\n'); OK = FALSE; while OK == FALSE fprintf(1,'Input m and n on separate lines.\n'); LM = input(' '); LN = input(' '); BN = LM+LN; if LM >= 0 & LN >= 0 OK = TRUE; else fprintf(1,'m and n must both be nonnegative.\n'); end; if LM == 0 & LN == 0 OK = FALSE; fprintf(1,'Not both m and n can be zero\n'); end; end; OK = FALSE; while OK == FALSE fprintf(1,'The Chebyshev coefficients a(0), a(1), ... , a(N+m)\n'); fprintf(1,'are to be input.\n'); fprintf(1,'Choice of input method:\n'); fprintf(1,'1. Input entry by entry from keyboard\n'); fprintf(1,'2. Input data from a text file\n'); fprintf(1,'Choose 1 or 2 please\n'); FLAG = input(' '); if FLAG == 1 | FLAG == 2 OK = TRUE; end; end; AA = zeros(1,BN+LM+1); NROW = zeros(1,BN+1); P = zeros(1,LN+1); Q = zeros(1,LM+1); A = zeros(BN+1,BN+2); if FLAG == 1 fprintf(1,'Input in order a(0) to a(N+m)\n'); for I = 0 : BN+LM fprintf(1,'Input A(%d)\n', I); AA(I+1) = input(' '); end; end; if FLAG == 2 fprintf(1,'The text file may contain as many entries\n'); fprintf(1,'per line as desired each separated by blank.\n'); fprintf(1,'Has such a text file been created?\n'); fprintf(1,'Enter Y or N\n'); AAA = input(' ','s'); if AAA == 'Y' | AAA == 'y' fprintf(1,'Input the file name in the form - '); fprintf(1,'drive:\\name.ext\n'); fprintf(1,'for example: A:\\DATA.DTA\n'); NAME = input(' ','s'); INP = fopen(NAME,'rt'); for I = 0 : BN+LM AA(I+1) = fscanf(INP, '%f',1); end; fclose(INP); else fprintf(1,'Please create the input file.\n'); fprintf(1,'The program will end so the input file can '); fprintf(1,'be created.\n'); OK = FALSE; end; end; if OK == TRUE % STEP 1 N = BN; M = N+1; % STEP 2 - performed on input for I = 1 : M NROW(I) = I; end; % initialize row pointer NN = N-1; % STEP 3 Q(1) = 1.0; % STEP 4 % set up a linear system with matrix A instead of B for I = 0 : N % STEP 5 for J = 0 : I if J <= LN A(I+1,J+1) = 0; end; end; % STEP 6 if I <= LN A(I+1,I+1) = 1.0; end; % STEP 7 for J = I+1 : LN A(I+1,J+1) = 0; end; % STEP 8 for J = LN+1 : N if I ~= 0 PP = I-J+LN; if PP < 0 PP = -PP; end; A(I+1,J+1) = -(AA(I+J-LN+1)+AA(PP+1))/2.0; else A(I+1,J+1) = -AA(J-LN+1)/2.0; end; end; A(I+1,N+2) = AA(I+1); end; % STEP 9 A(1,N+2) = A(1,N+2)/2.0; % STEPS 10 -21 solve the linear system using partial pivoting I = LN+2; % STEP 10 while OK == TRUE & I <= N % STEP 11 IMAX = NROW(I); AMAX = abs(A(IMAX,I)); IMAX = I; JJ = I+1; for IP = JJ : N + 1 JP = NROW(IP); if abs(A(JP,I)) > AMAX AMAX = abs(A(JP,I)); IMAX = IP; end; end; % STEP 12 if AMAX <= 1.0e-20 OK = false; else % STEP 13 % simulate row interchange if NROW(I) ~= NROW(IMAX) NCOPY = NROW(I); NROW(I) = NROW(IMAX); NROW(IMAX) = NCOPY; end; I1 = NROW(I); % STEP 14 % perform elimination for J = JJ : M J1 = NROW(J); % STEP 15 XM = A(J1,I)/A(I1,I); % STEP 16 for K = JJ : M + 1 A(J1,K) = A(J1,K)-XM*A(I1,K); end; % STEP 17 A(J1,I) = 0; end; end; I = I+1; end; if OK == TRUE % STEP 18 N1 = NROW(N+1); if abs(A(N1,N+1)) <= 1.0e-20 OK = false; % system has no unique solution else % STEP 19 % start backward substitution if LM > 0 Q(LM+1) = A(N1,M+1)/A(N1,N+1); A(N1,M+1) = Q(LM+1); end; PP = 1; % STEP 20 for K = LN+2 : N I = N-K+LN+2; JJ = I+1; N2 = NROW(I); SUM = A(N2,M+1); for KK = JJ : N + 1 LL = NROW(KK); SUM = SUM - A(N2,KK) * A(LL,M+1); end; A(N2,M+1) = SUM / A(N2,I); Q(LM-PP+1) = A(N2,M+1); PP = PP+1; end; % STEP 21 for K = 1 : LN + 1 I = LN+1-K+1; N2 = NROW(I); SUM = A(N2,M+1); for KK = LN+2 : N + 1 LL = NROW(KK); SUM = SUM-A(N2,KK)*A(LL,M+1); end; A(N2,M+1) = SUM ; P(LN-K+2) = A(N2,M+1); end; % STEP 22 % procedure completed successfully fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Enter 1 or 2\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'for example: A:\\OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'CHEBYSHEV RATIONAL APPROXIMATION\n\n'); fprintf(OUP, 'Denominator Coefficients Q(0), ..., Q(M) \n'); for I = 0 : LM fprintf(OUP, ' %11.8f', Q(I+1)); end; fprintf(OUP, '\n'); fprintf(OUP, 'Numerator Coefficients P(0), ..., P(N)\n'); for I = 0 : LN fprintf(OUP, ' %11.8f', P(I+1)); end; fprintf(OUP, '\n'); if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end; end; end; if OK == FALSE fprintf(1,'System has no unique solution\n'); end; end;