% GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING ALGORITHM 6.2 % % To solve the n by n linear system % % E1: A(1,1) X(1) + A(1,2) X(2) +...+ A(1,n) X(n) = A(1,n+1) % E2: A(2,1) X(1) + A(2,2) X(2) +...+ A(2,n) X(n) = A(2,n+1) % : % . % EN: A(n,1) X(1) + A(n,2) X(2) +...+ A(n,n) X(n) = A(n,n+1) % % INPUT: number of unknowns and equations n; augmented % matrix A = (A(I,J)) where 1<=I<=n and 1<=J<=n+1. % % OUTPUT: solution x(1), x(2),...,x(n) or a message that the % linear system has no unique solution. syms('AA', 'NAME', 'INP', 'OK', 'N', 'I', 'J', 'A'); syms('M', 'NROW', 'NN', 'ICHG', 'IMAX', 'AMAX', 'JJ'); syms('IP', 'JP', 'NCOPY', 'I1', 'J1', 'XM', 'K', 'N1'); syms('X', 'N2', 'SUM', 'KK', 'FLAG', 'OUP'); TRUE = 1; FALSE = 0; fprintf(1,'This is Gaussian Elimination with Partial Pivoting.\n'); fprintf(1,'The array will be input from a text file in the order:\n'); fprintf(1,'A(1,1), A(1,2), ..., A(1,N+1) \n'); fprintf(1,'A(2,1), A(2,2), ..., A(2,N+1),\n'); fprintf(1,'..., A(N,1), A(N,2), ..., A(N,N+1)\n\n'); fprintf(1,'Place as many entries as desired on each line, but separate '); fprintf(1,'entries with\n'); fprintf(1,'at least one blank.\n\n\n'); fprintf(1,'Has the input file been created? - enter Y or N.\n'); AA = input(' ','s'); if AA == 'Y' | AA == 'y' fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'for example: A:\\DATA.DTA\n'); NAME = input(' ','s'); INP = fopen(NAME,'rt'); OK = FALSE; while OK == FALSE fprintf(1,'Input the number of equations - an integer.\n'); N = input(' '); if N > 0 A = zeros(N,N+1); X = zeros(1,N); NROW = zeros(1,N); for I = 1:N for J = 1:N+1 A(I,J) = fscanf(INP, '%f',1); end; end; OK = TRUE; fclose(INP); else fprintf(1,'The number must be a positive integer.\n'); end; end; else fprintf(1,'The program will end so the input file can be created.\n'); end; if OK == TRUE M = N+1; % STEP 1 for I = 1:N NROW(I) = I; end; % initialize row pointer NN = N-1; ICHG = 0; I = 1; % STEP 2 while OK == TRUE & I <= NN % STEP 3 IMAX = NROW(I); AMAX = abs(A(IMAX,I)); IMAX = I; JJ = I+1; for IP = JJ:N JP = NROW(IP); if abs(A(JP,I)) > AMAX AMAX = abs(A(JP,I)); IMAX = IP; end; end; % STEP 4 if AMAX <= 1.0e-20 OK = FALSE; else % STEP 5 % simulate row interchange if NROW(I) ~= NROW(IMAX) ICHG = ICHG+1; NCOPY = NROW(I); NROW(I) = NROW(IMAX); NROW(IMAX) = NCOPY; end; I1 = NROW(I); % STEP 6 for J = JJ:N J1 = NROW(J); % STEP 7 XM = A(J1,I)/A(I1,I); % STEP 8 for K = JJ:M A(J1,K) = A(J1,K)-XM*A(I1,K); end; % Multiplier XM could be saved in A(J1,I) A(J1,I) = 0; end; end; I = I+1; end; if OK == TRUE % STEP 9 N1 = NROW(N); if abs(A(N1,N)) <= 1.0e-20 OK = FALSE; % system has no unique solution else % STEP 10 % start backward substitution X(N) = A(N1,M) / A(N1,N); % STEP 11 for K = 1:NN I = NN - K + 1; JJ = I + 1; N2 = NROW(I); SUM = 0; for KK = JJ:N SUM = SUM-A(N2,KK)*X(KK); end; X(I) = (A(N2,M) + SUM) / A(N2,I); end; % STEP 12 % procedure completed successfully fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Please enter 1 or 2.\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'for example: A:\\OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'GAUSSIAN ELIMINATION - PARTIAL PIVOTING\n\n'); fprintf(OUP, 'The reduced system - output by rows:\n'); for I = 1:N for J = 1:M fprintf(OUP, ' %11.8f', A(I,J)); end; fprintf(OUP, '\n'); end; fprintf(OUP, '\n\nHas solution vector:\n'); for I = 1:N fprintf(OUP, ' %12.8f', X(I)); end; fprintf (OUP, '\n\nwith %d row interchange(s)\n', ICHG); fprintf(OUP, '\nThe rows have been logically re-ordered to:\n'); for I = 1:N fprintf(OUP, ' %2d', NROW(I)); end; fprintf(OUP,'\n'); if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end; end; end; if OK == FALSE fprintf(1,'System has no unique solution\n'); end; end;