function [res] = JAC(I,J,M,V,ss) % This function is used by Newton's Method for Systems and % by Broyden's Method (Algorithms 10.1 and 10.2) to define % the Jacobian. if M == 2 g = inline(ss((I-1)*M+J),'y1','y2'); res = g(V(1),V(2)); elseif M == 3 g = inline(ss((I-1)*M+J),'y1','y2','y3'); res = g(V(1),V(2),V(3)); elseif M == 4 g = inline(ss((I-1)*M+J),'y1','y2','y3','y4'); res = g(V(1),V(2),V(3),V(4)); elseif M == 5 g = inline(ss((I-1)*M+J),'y1','y2','y3','y4','y5'); res = g(V(1),V(2),V(3),V(4),V(5)); elseif M == 6 g = inline(ss((I-1)*M+J),'y1','y2','y3','y4','y5','y6'); res = g(V(1),V(2),V(3),V(4),V(5),V(6)); else g = inline(ss((I-1)*M+J),'y1','y2','y3','y4','y5','y6','y7'); res = g(V(1),V(2),V(3),V(4),V(5),V(6),V(7)); end;