% POWER METHOD ALGORITHM 9.1 % % To approximate the dominant eigenvalue and an associated % eigenvector of the n by n matrix A given a nonzero vector x: % % INPUT: Dimension n; matrix A; vector x; tolerance TOL; maximum % number of iterations N. % % OUTPUT: Approximate eigenvalue MU; approximate eigenvector x % or a message that the maximum number of iterations was % exceeded. syms('OK', 'AA', 'NAME', 'INP', 'N', 'I', 'J', 'A', 'X', 'TOL'); syms('NN', 'FLAG', 'OUP', 'K', 'LP', 'AMAX', 'Y', 'YMU'); syms('ERR', 'T'); TRUE = 1; FALSE = 0; fprintf(1,'This is the Power Method.\n'); OK = FALSE; fprintf(1,'The array will be input from a text file in the order:\n'); fprintf(1,'A(1,1), A(1,2), ..., A(1,n), \n'); fprintf(1,'A(2,1), A(2,2), ..., A(2,n),\n'); fprintf(1,'..., A(n,1), A(n,2), ..., A(n,n)\n\n'); fprintf(1,'Place as many entries as desired on each line, but '); fprintf(1,'separate entries with\n'); fprintf(1,'at least one blank.\n'); fprintf(1,'The initial approximation should follow in same format.\n\n\n'); fprintf(1,'Has the input file been created? - enter Y or N.\n'); AA = input (' ','s'); if AA == 'Y' | AA == 'y' fprintf(1,'Input the file name in the form - drive:name.ext\n'); fprintf(1,'for example: A:DATA.DTA \n'); NAME = input(' ','s'); INP = fopen(NAME,'rt'); OK = FALSE; while OK == FALSE fprintf(1,'Input the dimension n.\n'); N = input(' '); if N > 0 A = zeros(N,N); X = zeros(1,N); Y = zeros(1,N); for I = 1 : N for J = 1 : N A(I,J) = fscanf(INP, '%f',1); end; end; for I = 1 : N X(I) = fscanf(INP, '%f',1); end; fclose(INP); while OK == FALSE fprintf(1,'Input the tolerance.\n'); TOL = input(' '); if TOL > 0 OK = TRUE; else fprintf(1,'Tolerance must be positive number.\n'); end; end; OK = FALSE; while OK == FALSE fprintf(1,'Input maximum number of iterations '); fprintf(1,'- integer.\n'); NN = input(' '); % use NN for N if NN > 0 OK = TRUE; else fprintf(1,'Number must be positive integer.\n'); end; end; else fprintf(1,'The dimension must be a positive integer.\n'); end; end; else fprintf(1,'The program will end so the input file can be created.\n'); end; if OK == TRUE fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Please enter 1 or 2.\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'for example A:\\OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'POWER METHOD\n\n'); fprintf(OUP, 'iter approx approx eigenvector\n'); fprintf(OUP, ' eigenvalue\n'); % STEP 1 K = 1; % STEP 2 LP = 1; AMAX = abs(X(1)); for I = 2 : N if abs(X(I)) > AMAX AMAX = abs(X(I)); LP = I; end; end; % STEP 3 for I = 1 : N X(I) = X(I)/AMAX; end; % STEP 4 while K <= NN & OK == TRUE % STEP 5 for I = 1 : N Y(I) = 0; for J = 1 : N Y(I) = Y(I) + A(I,J) * X(J); end; end; % STEP 6 YMU = Y(LP); % STEP 7 LP = 1; AMAX = abs(Y(1)); for I = 2 : N if abs(Y(I)) > AMAX AMAX = abs(Y(I)); LP = I; end; end; % STEP 8 if AMAX <= 0 fprintf(1,'0 eigenvalue - select another '); fprintf(1,'initial vector and begin again\n'); OK = FALSE; else % STEP 9 ERR = 0; for I = 1 : N T = Y(I)/Y(LP); if abs(X(I)-T) > ERR ERR = abs(X(I)-T); end; X(I) = T; end; fprintf(OUP, '%d %12.8f', K, YMU); for I = 1 : N fprintf(OUP, ' %11.8f', X(I)); end; fprintf(OUP, '\n'); % STEP 10 if ERR <= TOL fprintf(OUP, '\n\nThe eigenvalue = %12.8f',YMU); fprintf(OUP, ' to tolerance = %.10e\n', TOL); fprintf(OUP, 'obtained on iteration number = %d\n\n', K); fprintf(OUP, 'Unit eigenvector is :\n\n'); for I = 1 : N fprintf(OUP, ' %11.8f', X(I)); end; fprintf(OUP, '\n'); OK = FALSE; end; % STEP 11 K = K+1; end; end; % STEP 12 if K > NN fprintf(1,'Method did not converge within %d iterations\n', NN); end; if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end; end;