% DIRECT FACTORIZATION ALGORITHM 6.4 % % To factor the n by n matrix A = (A(I,J)) into the product of the % lower triangular matrix L = (L(I,J)) and the upper triangular % matrix U = (U(I,J)), that is A = LU, where the main diagonal of % either L or U consists of all ones: % % INPUT: dimension n; the entries A(I,J), 1<=I, J<=n, of A; % the diagonal L(1,1), ..., L(N,N) of L or the diagonal % U(1,1), ..., U(N,N) of U. % % OUTPUT: the entries L(I,J), 1<=J<=I, 1<=I<=n of L and the entries % U(I,J), I<=J<=n, 1<=I<=n of U. syms('AA', 'NAME', 'INP', 'OK', 'N', 'I', 'J', 'A'); syms('FLAG', 'ISW', 'XL', 'M', 'KK', 'S', 'K', 'JJ'); syms('SS', 'OUP', 's'); TRUE = 1; FALSE = 0; fprintf(1,'This is the general LU factorization method.\n'); fprintf(1,'The array will be input from a text file in the order:\n'); fprintf(1,'A(1,1), A(1,2), ..., A(1,N), \n') fprintf(1,'A(2,1), A(2,2), ..., A(2,N),\n'); fprintf(1,'..., A(N,1), A(N,2), ..., A(N,N)\n\n'); fprintf(1,'Place as many entries as desired on each line, but separate\n'); fprintf(1,'entries with\n'); fprintf(1,'at least one blank.\n\n\n'); fprintf(1,'Has the input file been created? - enter Y or N.\n'); AA = input(' ','s'); if AA == 'Y' | AA == 'y' fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'for example: A:\\DATA.DTA\n'); NAME = input(' ','s'); INP = fopen(NAME,'rt'); OK = FALSE; while OK == FALSE fprintf(1,'Input the dimension n - an integer.\n'); N = input(' '); if N > 0 A = zeros(N,N); XL = zeros(1,N); for I = 1 : N for J = 1 : N A(I,J) = fscanf(INP, '%f',1); end; end; OK = TRUE; fclose(INP); else fprintf(1,'The number must be a positive integer.\n'); end; end; fprintf(1,'Choice of diagonals:\n'); fprintf(1,'1. Diagonal of L consists of ones\n'); fprintf(1,'2. Diagonal of U consists of ones\n'); fprintf(1,'Please enter 1 or 2.\n'); FLAG = input(' '); if FLAG == 1 ISW = 0; else ISW = 1; end else fprintf(1,'The program will end so the input file can be created.\n'); OK = FALSE; end; if OK == TRUE for I = 1 : N XL(I) = 1; end; % STEP 1 if abs(A(1,1)) <= 1.0e-20 OK = FALSE; else % the entries of L below the main diagonal will be placed % in the corresponding entries of A; the entries of U % above the main diagonal will be placed in the % corresponding entries of A; the main diagonal which % was not input will become the main diagonal of A; % the input main diagonal of L or U is, % of course, placed in XL A(1,1) = A(1,1)/XL(1); % STEP 2 for J = 2 : N if ISW == 0 % first row of U A(1,J) = A(1,J)/XL(1); % first column of L A(J,1) = A(J,1)/A(1,1); else % first row of U A(1,J) = A(1,J)/A(1,1); % first column of L A(J,1) = A(J,1)/XL(1); end; end; % STEP 3 M = N-1; I = 2; while I <= M & OK == TRUE % STEP 4 KK = I-1; S = 0; for K = 1 : KK S = S-A(I,K)*A(K,I); end; A(I,I) = (A(I,I)+S)/XL(I); if abs(A(I,I)) <= 1.0e-20 OK = FALSE; else % STEP 5 JJ = I+1; for J = JJ : N SS = 0; S = 0; for K = 1 : KK SS = SS-A(I,K)*A(K,J); S = S-A(J,K)*A(K,I); end; if ISW == 0 % Ith row of U A(I,J) = (A(I,J)+SS)/XL(I); % Ith column of L A(J,I) = (A(J,I)+S)/A(I,I); else % Ith row of U A(I,J) = (A(I,J)+SS)/A(I,I); % Ith column of L A(J,I) = (A(J,I)+S)/XL(I); end; end; end; I = I+1; end; if OK == TRUE % STEP 6 S = 0; for K = 1 : M S = S-A(N,K)*A(K,N); end; A(N,N) = (A(N,N)+S)/XL(N); % If A(N,N) = 0 then A = LU but the matrix is singular. % Process is complete, all entries of A have been determined. % STEP 7 fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Please enter 1 or 2\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'For example A:\\OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'GENERAL LU FACTORIZATION\n\n'); if ISW == 0 fprintf(OUP, 'The diagonal of L consists of all entries = 1.0\n'); else fprintf(OUP, 'The diagonal of U consists of all entries = 1.0\n'); end; fprintf(OUP, '\nEntries of L below/on diagonal and entries of U above'); fprintf(OUP, '/on diagonal\n'); fprintf(OUP, '- output by rows in overwrite format:\n'); for I = 1 : N for J = 1 : N fprintf(OUP, ' %11.8f', A(I,J)); end; fprintf(OUP, '\n'); end; if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end; end; end; if OK == FALSE fprintf(1,'The matrix does not have an LU factorization.\n'); end; end;