% ADAMS-FOURTH ORDER PREDICTOR-CORRECTOR ALGORITHM 5.4 % % To approximate the solution of the initial value problem % y' = f(t,y), a <= t <= b, y(a) = alpha, % at N+1 equally spaced points in the interval [a,b]. % % INPUT: endpoints a,b; initial condition alpha; integer N. % % OUTPUT: approximation w to y at the (N+1) values of t. syms('F', 'OK', 'A', 'B', 'ALPHA', 'N', 'FLAG', 'NAME', 'OUP'); syms('H', 'T', 'W', 'I', 'K1', 'K2', 'K3', 'K4', 'T0', 'W0', 'J'); syms('t','y', 's','Part1','Part2'); TRUE = 1; FALSE = 0; T = zeros(1,4); W = zeros(1,4); fprintf(1,'This is Adams-Bashforth Predictor Corrector Method\n'); fprintf(1,'Input the function F(t,y) in terms of t and y\n'); fprintf(1,'For example: y-t^2+1 \n'); s = input(' ','s'); F = inline(s,'t','y'); OK = FALSE; while OK == FALSE fprintf(1,'Input left and right endpoints on separate lines.\n'); A = input(' '); B = input(' '); if A >= B fprintf(1,'Left endpoint must be less than right endpoint\n'); else OK = TRUE; end; end; fprintf(1,'Input the initial condition\n'); ALPHA = input(' '); OK = FALSE; while OK == FALSE fprintf(1,'Input an integer > 3 for the number of subintervals\n'); N = input(' '); if N <= 3 fprintf(1,'Number must be at least 4.\n'); else OK = TRUE; end; end; if OK == TRUE fprintf(1,'Choice of output method:\n'); fprintf(1,'1. Output to screen\n'); fprintf(1,'2. Output to text file\n'); fprintf(1,'Please enter 1 or 2\n'); FLAG = input(' '); if FLAG == 2 fprintf(1,'Input the file name in the form - drive:\\name.ext\n'); fprintf(1,'For example A:\\OUTPUT.DTA\n'); NAME = input(' ','s'); OUP = fopen(NAME,'wt'); else OUP = 1; end; fprintf(OUP, 'ADAMS-BASHFORTH FOURTH ORDER PREDICTOR CORRECTOR METHOD\n\n'); fprintf(OUP, ' t w\n'); % STEP 1 H = (B-A)/N; T(1) = A; W(1) = ALPHA; fprintf(OUP, '%5.3f %11.7f\n', T(1), W(1)); % STEP 2 for I = 1:3 % STEP 3 AND 4 % compute starting values using Runge-Kutta method T(I+1) = T(I)+H; K1 = H*F(T(I), W(I)); K2 = H*F(T(I)+0.5*H, W(I)+0.5*K1); K3 = H*F(T(I)+0.5*H, W(I)+0.5*K2); K4 = H*F(T(I+1), W(I)+K3); W(I+1) = W(I)+(K1+2.0*(K2+K3)+K4)/6.0; % STEP 5 fprintf(OUP, '%5.3f %11.7f\n', T(I+1), W(I+1)); end; % STEP 6 for I = 4:N % STEP 7 % T0, W0 will be used in place of t, w resp. T0 = A+I*H; % predict W(I) Part1 = 55.0*F(T(4),W(4))-59.0*F(T(3),W(3))+37.0*F(T(2),W(2)); Part2 = -9.0*F(T(1),W(1)); W0 = W(4)+H*(Part1+Part2)/24.0; % correct W(I) Part1 = 9.0*F(T0,W0)+19.0*F(T(4),W(4))-5.0*F(T(3),W(3))+F(T(2),W(2)); W0 = W(4)+H*(Part1)/24.0; % STEP 8 fprintf(OUP, '%5.3f %11.7f\n', T0, W0); % STEP 9 % prepare for next iteration for J = 1:3 T(J) = T(J+1); W(J) = W(J+1); end; % STEP 10 T(4) = T0; W(4) = W0; end; end; % STEP 11 if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end;