> restart: > Digits := 20: > # CUBIC SPLINE RAYLEIGH-RITZ ALGORITHM 11.6 > # > # To approximate the solution to the boundary-value problem > # > # -D(P(X)Y')/DX + Q(X)Y = F(X), 0 <= X <= 1, Y(0)=Y(1)=0 > # > # with a sum of cubic splines: > # > # INPUT: Integer n > # > # OUTPUT: Coefficients C(0),...,C(n+1) of the basis functions > INTE := proc(J,JJ) local inte: > inte := JJ-J+3: > RETURN(inte): > end: > XINT := proc(XU,XL,A1,B1,C1,D1,A2,B2,C2,D2,A3,B3,C3,D3) local AA,BB,CC,DD,EE,FF,GG,XHIGH,XLOW,I1,xint,C: > AA := A1*A2: > BB := A1*B2+A2*B1: > CC := A1*C2+B1*B2+C1*A2: > DD := A1*D2+B1*C2+C1*B2+D1*A2: > EE := B1*D2+C1*C2+D1*B2: > FF := C1*D2+D1*C2: > GG := D1*D2: > C[9] := AA*A3: > C[8] := (AA*B3+BB*A3)/2: > C[7] := (AA*C3+BB*B3+CC*A3)/3: > C[6] := (AA*D3+BB*C3+CC*B3+DD*A3)/4: > C[5] := (BB*D3+CC*C3+DD*B3+EE*A3)/5: > C[4] := (CC*D3+DD*C3+EE*B3+FF*A3)/6: > C[3] := (DD*D3+EE*C3+FF*B3+GG*A3)/7: > C[2] := (EE*D3+FF*C3+GG*B3)/8: > C[1] := (FF*D3+GG*C3)/9: > C[0] := (GG*D3)/10: > XHIGH := 0: > XLOW := 0: > for I1 from 1 to 10 do > XHIGH := (XHIGH+C[I1-1])*XU: > XLOW := (XLOW+C[I1-1])*XL: > od: > xint := XHIGH-XLOW: > RETURN(xint): > end: > print(`This is the Cubic Spline Rayleigh-Ritz Method.`): > OK := FALSE: > print(`Input functions P(X), Q(X), and F(X) in terms of x > separated by a space.`): > print(`For example: `): > print(`1 3.141592654^2 2*3.141592654^2*sin(3.1415926548*x)`): > print(`separated by at least one space.`): > Pf := scanf(`%a`)[1]: > Qf := scanf(`%a`)[1]: > Ff := scanf(`%a`)[1]: > print(`P(x) = `):print(Pf):print(`Q(x) = `):print(Qf):print(`R(x) = `):print(Ff): > FPL := evalf(subs(x=0,diff(Ff,x))): > FPR := evalf(subs(x=1,diff(Ff,x))): > QPL := evalf(subs(x=0,diff(Qf,x))): > QPR := evalf(subs(x=1,diff(Qf,x))): > PPL := evalf(subs(x=0,diff(Pf,x))): > PPR := evalf(subs(x=1,diff(Pf,x))): > F := unapply(Ff,x,y,z): > Q := unapply(Qf,x,y,z): > P := unapply(Pf,x,y,z): > while OK = FALSE do > print(`Input a positive integer n, where x(0) = 0.0 and x(n+1) = 1.0`): > N := scanf(`%d`)[1]: print(`n = `):print(N): > if N <= 0 then > print(`Number must be a positive integer.`): > else > OK := TRUE: > fi: > od: > if OK = TRUE then > print(`Choice of output method:`): > print(`1. Output to screen`): > print(`2. Output to text File`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Input is `):print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example A:\\OUTPUT.DTA`): > NAME := scanf(`%s`)[1]: print(`Output file is `):print(NAME): > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `CUBIC SPLINE RAYLEIGH-RITZ METHOD\n\n`): > # Step 1 > H := 1/(N+1): > N1 := N+1: > N2 := N+2: > N3 := N+3: > # Initialize matrix A at 0, note that A[I,N+3] = B[I] > for I3 from 1 to N2 do > for J from 1 to N3 do > A[I3-1,J-1] := 0: > od: > od: > # Step 2 > # X[1] = 0, ... , X[I] = (I-1)*H, ... , X[N+1] = 1-H, X[N+2] = 1 > for I3 from 1 to N2 do > X[I3-1] := (I3-1)*H: > od: > # STEPS 3 and 4 are implemented in what follows. Initialize coefficients > # CO[I,J,K], DCO[I,J,K] > for I3 from 1 to N2 do > for J from 1 to 4 do > # JJ corresponds the coefficients of phi and phi' to the proper interval > # involving J > JJ := I3+J-3: > CO[I3-1,J-1,0] := 0: > CO[I3-1,J-1,1] := 0: > CO[I3-1,J-1,2] := 0: > CO[I3-1,J-1,3] := 0: > E := I3-1: > OK := TRUE: > if JJ < I3-2 or JJ >= I3+2 then > OK := FALSE: > fi: > if I3 = 1 and JJ < I3 then > OK := FALSE: > fi: > if I3 = 2 and JJ < I3-1 then > OK := FALSE: > fi: > if I3 = N+1 and JJ > N+1 then > OK := FALSE: > fi: > if I3 = N+2 and JJ >= N+2 then > OK := FALSE: > fi: > if OK = TRUE then > if JJ <= I3-2 then > CO[I3-1,J-1,0] := (((-E+6)*E-12)*E+8)/24: > CO[I3-1,J-1,1] := ((E-4)*E+4)/(8*H): > CO[I3-1,J-1,2] := (-E+2)/(8*H^2): > CO[I3-1,J-1,3] := 1/(24*H^3): > OK := FALSE: > else > if JJ > I3 then > CO[I3-1,J-1,0] := (((E+6)*E+12)*E+8)/24: > CO[I3-1,J-1,1] := ((-E-4)*E-4)/(8*H): > CO[I3-1,J-1,2] := (E+2)/(8*H^2): > CO[I3-1,J-1,3] := -1/(24*H^3): > OK := FALSE: > else > if JJ > I3-1 then > CO[I3-1,J-1,0] := ((-3*E-6)*E*E+4)/24: > CO[I3-1,J-1,1] := (3*E+4)*E/(8*H): > CO[I3-1,J-1,2] := (-3*E-2)/(8*H^2): > CO[I3-1,J-1,3] := 1/(8*H^3): > if I3 <> 1 and I3 <> N+1 then > OK := FALSE: > fi: > else > CO[I3-1,J-1,0] := ((3*E-6)*E*E+4)/24: > CO[I3-1,J-1,1] := (-3*E+4)*E/(8*H): > CO[I3-1,J-1,2] := (3*E-2)/(8*H^2): > CO[I3-1,J-1,3] := -1/(8*H^3): > if I3 <> 2 and I3 <> N+2 then > OK := FALSE: > fi: > fi: > fi: > fi: > fi: > if OK = TRUE then > if I3 <= 2 then > AA := 1/24: > BB := -1/(8*H): > CC := 1/(8*H^2): > DD := -1/(24*H^3): > if I3 = 2 then > CO[I3-1,J-1,0] := CO[I3-1,J-1,0]-AA: > CO[I3-1,J-1,1] := CO[I3-1,J-1,1]-BB: > CO[I3-1,J-1,2] := CO[I3-1,J-1,2]-CC: > CO[I3-1,J-1,3] := CO[I3-1,J-1,3]-DD: > else > CO[I3-1,J-1,0] := CO[I3-1,J-1,0]-4*AA: > CO[I3-1,J-1,1] := CO[I3-1,J-1,1]-4*BB: > CO[I3-1,J-1,2] := CO[I3-1,J-1,2]-4*CC: > CO[I3-1,J-1,3] := CO[I3-1,J-1,3]-4*DD: > fi: > else > EE := N+2: > AA := (((-EE+6)*EE-12)*EE+8)/24: > BB := ((EE-4)*EE+4)/(8*H): > CC := (-EE+2)/(8*H^2): > DD := 1/(24*H^3): > if I3 = N+1 then > CO[I3-1,J-1,0] := CO[I3-1,J-1,0]-AA: > CO[I3-1,J-1,1] := CO[I3-1,J-1,1]-BB: > CO[I3-1,J-1,2] := CO[I3-1,J-1,2]-CC: > CO[I3-1,J-1,3] := CO[I3-1,J-1,3]-DD: > else > CO[I3-1,J-1,0] := CO[I3-1,J-1,0]-4*AA: > CO[I3-1,J-1,1] := CO[I3-1,J-1,1]-4*BB: > CO[I3-1,J-1,2] := CO[I3-1,J-1,2]-4*CC: > CO[I3-1,J-1,3] := CO[I3-1,J-1,3]-4*DD: > fi: > fi: > fi: > DCO[I3-1,J-1,0] := 0: > DCO[I3-1,J-1,1] := 0: > DCO[I3-1,J-1,2] := 0: > E := I3-1: > OK := TRUE: > if JJ < I3-2 or JJ >= I3+2 then > OK := FALSE: > fi: > if I3 = 1 and JJ < I3 then > OK := FALSE: > fi: > if I3 = 2 and JJ < I3-1 then > OK := FALSE: > fi: > if I3 = N+1 and JJ > N+1 then > OK := FALSE: > fi: > if I3 = N+2 and JJ >= N+2 then > OK := FALSE: > fi: > if OK = TRUE then > if JJ <= I3-2 then > DCO[I3-1,J-1,0] := ((E-4)*E+4)/(8*H): > DCO[I3-1,J-1,1] := (-E+2)/(4*H^2): > DCO[I3-1,J-1,2] := 1/(8*H^3): > OK := FALSE: > else > if JJ > I3 then > DCO[I3-1,J-1,0] := ((-E-4)*E-4)/(8*H): > DCO[I3-1,J-1,1] := (E+2)/(4*H^2): > DCO[I3-1,J-1,2] := -1/(8*H^3): > OK := FALSE: > else > if JJ > I3-1 then > DCO[I3-1,J-1,0] := (3*E+4)*E/(8*H): > DCO[I3-1,J-1,1] := (-3.0*E-2.0)/(4.0*H^2): > DCO[I3-1,J-1,2] := 3/(8*H^3): > if I3 <> 1 and I3 <> N+1 then > OK := FALSE: > fi: > else > DCO[I3-1,J-1,0] := (-3*E+4)*E/(8*H): > DCO[I3-1,J-1,1] := (3*E-2)/(4*H^2): > DCO[I3-1,J-1,2] := -3/(8*H^3): > if I3 <> 2 and I3 <> N+2 then > OK := FALSE: > fi: > fi: > fi: > fi: > fi: > if OK = TRUE then > if I3 <= 2 then > AA := -1/(8*H): > BB := 1/(4*H^2): > CC := -1/(8*H^3): > if I3 = 2 then > DCO[I3-1,J-1,0] := DCO[I3-1,J-1,0]-AA: > DCO[I3-1,J-1,1] := DCO[I3-1,J-1,1]-BB: > DCO[I3-1,J-1,2] := DCO[I3-1,J-1,2]-CC: > else > DCO[I3-1,J-1,0] := DCO[I3-1,J-1,0]-4*AA: > DCO[I3-1,J-1,1] := DCO[I3-1,J-1,1]-4*BB: > DCO[I3-1,J-1,2] := DCO[I3-1,J-1,2]-4*CC: > fi: > else > EE := N+2: > AA := ((EE-4)*EE+4)/(8*H): > BB := (-EE+2)/(4*H^2): > CC := 1/(8*H^3): > if I3 = N+1 then > DCO[I3-1,J-1,0] := DCO[I3-1,J-1,0]-AA: > DCO[I3-1,J-1,1] := DCO[I3-1,J-1,1]-BB: > DCO[I3-1,J-1,2] := DCO[I3-1,J-1,2]-CC: > else > DCO[I3-1,J-1,0] := DCO[I3-1,J-1,0]-4*AA: > DCO[I3-1,J-1,1] := DCO[I3-1,J-1,1]-4*BB: > DCO[I3-1,J-1,2] := DCO[I3-1,J-1,2]-4*CC: > fi: > fi: > fi: > od: > od: > # Output the basis functions. > fprintf(OUP, `Basis Function: A + B*X + C*X**2 + D*X**3\n\n`): > fprintf(OUP, ` A B C D\n\n`): > for I3 from 1 to N2 do > fprintf(OUP, `phi( %d ) \n\n`, I3): > for J from 1 to 4 do > if I3 <> 1 or (J <> 1 and J <> 2) then > if I3 <> 2 or J <> 2 then > if I3 <> N1 or J <> 4 then > if I3 <> N2 or (J <> 3 and J <> 4) then > JJ1 := I3+J-3: > JJ2 := I3+J-2: > fprintf(OUP, `On (X( %d ), X( %d )) `, JJ1, JJ2): > for K from 1 to 4 do > fprintf(OUP, ` %12.8f `, CO[I3-1,J-1,K-1]): > od: > fprintf(OUP, `\n\n`): > fi: > fi: > fi: > fi: > od: > od: > # Obtain coefficients for F, P, Q > for I3 from 1 to N2 do > AA[I3-1] := evalf(F(X[I3-1])): > od: > XA[0] := 3.0*(AA[1]-AA[0])/H-3.0*FPL: > XA[N2-1] := 3.0*FPR-3.0*(AA[N2-1]-AA[N2-2])/H: > XL[0] := 2.0*H: > XU[0] := 0.5: > XZ[0] := XA[0]/XL[0]: > for I3 from 2 to N1 do > XA[I3-1] := 3.0*(AA[I3]-2.0*AA[I3-1]+AA[I3-2])/H: > XL[I3-1] := H*(4.0-XU[I3-2]): > XU[I3-1] := H/XL[I3-1]: > XZ[I3-1] := (XA[I3-1]-H*XZ[I3-2])/XL[I3-1]: > od: > XL[N2-1] := H*(2.0-XU[N2-2]): > XZ[N2-1] := (XA[N2-1]-H*XZ[N2-2])/XL[N2-1]: > CC[N2-1] := XZ[N2-1]: > for I3 from 1 to N1 do > J := N2-I3: > CC[J-1] := XZ[J-1]-XU[J-1]*CC[J]: > BB[J-1] := (AA[J]-AA[J-1])/H-H*(CC[J]+2.0*CC[J-1])/3.0: > DD[J-1] := (CC[J]-CC[J-1])/(3.0*H): > od: > for I3 from 1 to N1 do > AF[I3-1] := ((-DD[I3-1]*X[I3-1]+CC[I3-1])*X[I3-1]-BB[I3-1])*X[I3-1]+AA[I3-1]: > BF[I3-1] := (3.0*DD[I3-1]*X[I3-1]-2.0*CC[I3-1])*X[I3-1]+BB[I3-1]: > CF[I3-1] := CC[I3-1]-3.0*DD[I3-1]*X[I3-1]: > DF[I3-1] := DD[I3-1]: > od: > for I3 from 1 to N2 do > AA[I3-1] := evalf(P(X[I3-1])): > od: > XA[0] := 3.0*(AA[1]-AA[0])/H-3.0*PPL: > XA[N2-1] := 3.0*PPR-3.0*(AA[N2-1]-AA[N2-2])/H: > XL[0] := 2.0*H: > XU[0] := 0.5: > XZ[0] := XA[0]/XL[0]: > for I3 from 2 to N1 do > XA[I3-1] := 3.0*(AA[I3]-2.0*AA[I3-1]+AA[I3-2])/H: > XL[I3-1] := H*(4.0-XU[I3-2]): > XU[I3-1] := H/XL[I3-1]: > XZ[I3-1] := (XA[I3-1]-H*XZ[I3-2])/XL[I3-1]: > od: > XL[N2-1] := H*(2.0-XU[N2-2]): > XZ[N2-1] := (XA[N2-1]-H*XZ[N2-2])/XL[N2-1]: > CC[N2-1] := XZ[N2-1]: > for I3 from 1 to N1 do > J := N2-I3: > CC[J-1] := XZ[J-1]-XU[J-1]*CC[J]: > BB[J-1] := (AA[J]-AA[J-1])/H -H*(CC[J]+2.0*CC[J-1])/3.0: > DD[J-1] := (CC[J]-CC[J-1])/(3.0*H): > od: > for I3 from 1 to N1 do > AP[I3-1] := ((-DD[I3-1]*X[I3-1]+CC[I3-1])*X[I3-1]-BB[I3-1])*X[I3-1]+AA[I3-1]: > BP[I3-1] := (3.0*DD[I3-1]*X[I3-1]-2.0*CC[I3-1])*X[I3-1]+BB[I3-1]: > CP[I3-1] := CC[I3-1]-3.0*DD[I3-1]*X[I3-1]: > DP[I3-1] := DD[I3-1]: > od: > for I3 from 1 to N2 do > AA[I3-1] := evalf(Q(X[I3-1])): > od: > XA[0] := 3.0*(AA[1]-AA[0])/H-3.0*QPL: > XA[N2-1] := 3.0*QPR-3.0*(AA[N2-1]-AA[N2-2])/H: > XL[0] := 2.0*H: > XU[0] := 0.5: > XZ[0] := XA[0]/XL[0]: > for I3 from 2 to N1 do > XA[I3-1] := 3.0*(AA[I3]-2.0*AA[I3-1]+AA[I3-2])/H: > XL[I3-1] := H*(4.0-XU[I3-2]): > XU[I3-1] := H/XL[I3-1]: > XZ[I3-1] := (XA[I3-1]-H*XZ[I3-2])/XL[I3-1]: > od: > XL[N2-1] := H*(2.0-XU[N2-2]): > XZ[N2-1] := (XA[N2-1]-H*XZ[N2-2])/XL[N2-1]: > CC[N2-1] := XZ[N2-1]: > for I3 from 1 to N1 do > J := N2-I3: > CC[J-1] := XZ[J-1]-XU[J-1]*CC[J]: > BB[J-1] := (AA[J]-AA[J-1])/H -H*(CC[J]+2.0*CC[J-1])/3.0: > DD[J-1] := (CC[J]-CC[J-1])/(3.0*H): > od: > for I3 from 1 to N1 do > AQ[I3-1] := ((-DD[I3-1]*X[I3-1]+CC[I3-1])*X[I3-1]-BB[I3-1])*X[I3-1]+AA[I3-1]: > BQ[I3-1] := (3.0*DD[I3-1]*X[I3-1]-2.0*CC[I3-1])*X[I3-1]+BB[I3-1]: > CQ[I3-1] := CC[I3-1]-3.0*DD[I3-1]*X[I3-1]: > DQ[I3-1] := DD[I3-1]: > od: > # Steps 5-9 are implemented in what follows > for I3 from 1 to N2 do > # indices for limits of integration for A[I,J] and B[I] > J1 := min(I3+2,N+2): > J0 := max(I3-2,1): > J2 := J1-1: > # Integrate over each subinterval where phi(I) is nonzero > for JJ from J0 to J2 do > # limits of integration for each call > XU := X[JJ]: > XL := X[JJ-1]: > # coefficients of bases > K := INTE(I3,JJ): > A1 := DCO[I3-1,K-1,0]: > B1 := DCO[I3-1,K-1,1]: > C1 := DCO[I3-1,K-1,2]: > D1 := 0: > A2 := CO[I3-1,K-1,0]: > B2 := CO[I3-1,K-1,1]: > C2 := CO[I3-1,K-1,2]: > D2 := CO[I3-1,K-1,3]: > # call subprogram for integrations > A[I3-1,I3-1] := A[I3-1,I3-1]+XINT(XU,XL,AP[JJ-1],BP[JJ-1],CP[JJ-1],DP[JJ-1],A1,B1,C1,D1,A1,B1,C1,D1)+XINT(XU,XL,AQ[JJ-1],BQ[JJ-1],CQ[JJ-1],DQ[JJ-1],A2,B2,C2,D2,A2,B2,C2,D2): > A[I3-1,N+2]:=A[I3-1,N+2]+XINT(XU,XL,AF[JJ-1],BF[JJ-1],CF[JJ-1],DF[JJ-1],A2,B2,C2,D2,1,0,0,0): > od: > # compute A[I,J] for J = I+1, ..., Min(I+3,N+2) > K3 := I3+1: > if K3 <= N2 then > K2 := min(I3+3,N+2): > for J from K3 to K2 do > J0 := max(J-2,1): > for JJ from J0 to J2 do > XU := X[JJ]: > XL := X[JJ-1]: > K := INTE(I3,JJ): > A1 := DCO[I3-1,K-1,0]: > B1 := DCO[I3-1,K-1,1]: > C1 := DCO[I3-1,K-1,2]: > D1 := 0: > A2 := CO[I3-1,K-1,0]: > B2 := CO[I3-1,K-1,1]: > C2 := CO[I3-1,K-1,2]: > D2 := CO[I3-1,K-1,3]: > K := INTE(J,JJ): > A3 := DCO[J-1,K-1,0]: > B3 := DCO[J-1,K-1,1]: > C3 := DCO[J-1,K-1,2]: > D3 := 0: > A4 := CO[J-1,K-1,0]: > B4 := CO[J-1,K-1,1]: > C4 := CO[J-1,K-1,2]: > D4 := CO[J-1,K-1,3]: > A[I3-1,J-1] := A[I3-1,J-1]+XINT(XU,XL,AP[JJ-1],BP[JJ-1],CP[JJ-1],DP[JJ- > 1],A1,B1,C1,D1,A3,B3,C3,D3)+XINT(XU,XL,AQ[JJ-1],BQ[JJ-1],CQ[JJ-1],DQ[JJ- > 1],A2,B2,C2,D2,A4,B4,C4,D4): > od: > A[J-1,I3-1] := A[I3-1,J-1]: > od: > fi: > od: > # Step 10 > for I3 from 1 to N1 do > for J from I3+1 to N2 do > CC := A[J-1,I3-1]/A[I3-1,I3-1]: > for K from I3+1 to N3 do > A[J-1,K-1] := A[J-1,K-1]-CC*A[I3-1,K-1]: > od: > A[J-1,I3-1] := 0: > od: > od: > C[N2-1] := A[N2-1,N3-1]/A[N2-1,N2-1]: > for I3 from 1 to N1 do > J := N1-I3+1: > C[J-1] := A[J-1,N3-1]: > for KK from J+1 to N2 do > C[J-1] := C[J-1]-A[J-1,KK-1]*C[KK-1]: > od: > C[J-1] := C[J-1]/A[J-1,J-1]: > od: > # Step 14 > # Output coefficients > fprintf(OUP, `\nCoefficients: c(1), c(2), ... , c(n+1)\n\n`): > for I3 from 1 to N1 do > fprintf(OUP, ` %12.6e \n`, C[I3-1]): > od: > fprintf(OUP, `\n`): > # compute and output value of the approximation at the nodes > fprintf(OUP, `The approximation evaluated at the nodes:\n\n`): > fprintf(OUP, ` Node Value\n\n`): > for I3 from 1 to N2 do > S := 0: > for J from 1 to N2 do > J0 := max(J-2,1): > J1 := min(J+2,N+2): > SS := 0: > if I3 < J0 or I3 >= J1 then > S := S + C[J-1]*SS: > else > K := INTE(J,I3): > SS := > ((CO[J-1,K-1,3]*X[I3-1]+CO[J-1,K-1,2])*X[I3-1]+CO[J-1,K-1,1])*X[I3-1]+CO[J-1, > K-1,0]: > S := S + C[J-1]*SS: > fi: > od: > fprintf(OUP, `%12.8f %12.8f\n`, X[I3-1], S): > od: > fi: > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: