> restart: > # HOUSEHOLDER'S ALGORITHM 9.5 > # > # To obtain a symmetric tridiagonal matrix A(n-1) similar > # to the symmetric matrix A = A(1), construct the following > # matrices A(2),A(3),...,A(n-1) where A(K) = A(I,J)**K, for > # each K = 1,2,...,n-1: > # > # INPUT: Dimension n: matrix A. > # > # OUTPUT: A(n-1) (At each step, A can be overwritten.) > printf(`This is the Householder Method.`): > OK := FALSE: > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large matrices`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The symmetric array A will be input from a text file`): > print(`in the order:`): > print(` A(1,1), A(1,2), A(1,3), ..., A(1,n),`): > print(` A(2,2), A(2,3), ..., A(2,n),`): > print(` A(3,3), ..., A(3,n),`): > print(` ..., A(n,n)`): > print(`Place as many entries as desired on each line, but separate `): > print(`entries with at least one blank. `): > print(`Has the input file been created? - enter 1 for Yes or 2 for no.`): > AA := scanf(`%d`)[1]:print(`Your response is`): print(AA): > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example:A:\\DATA.DTA`): > NAME := scanf(`%s`)[1]:print(`The file name is`): print(NAME): > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE > do print(`Input the dimension n.`): > N := scanf(`%d`)[1]:print(`n is`): print(N): > if N > 1 then > for I1 from 1 to N do > for J from I1 to N do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > A[J-1,I1-1] := A[I1-1,J-1]: > od: > od: > fclose(INP): > OK := TRUE: > else > print(`Dimension must be greater than 1.`): > fi: > od: > else > print(`The program will end so the input file can be created.`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the dimension n - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OUP := default: > fprintf(OUP, `The original matrix - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to N do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > fi: > if OK = TRUE then > # Step 1 > for K from 1 to N-2 do > Q := 0: > KK := K+1: > # Step 2 > for I1 from KK to N do > Q := Q+A[I1-1,K-1]*A[I1-1,K-1]: > od: > # Step 3 > if abs(A[K,K-1]) <= 1.0e-20 then > S := sqrt(Q): > else > S := A[K,K-1]/abs(A[K,K-1])*sqrt(Q): > fi: > # Step 4 > RSQ := (S+A[K,K-1])*S: > # Step 5 > V[K-1] := 0: > V[K] := A[K,K-1]+S: > for J from K+2 to N do > V[J-1] := A[J-1,K-1]: > od: > # Step 6 > for J from K to N do > U[J-1] := 0: > for I1 from KK to N do > U[J-1] := U[J-1]+A[J-1,I1-1]*V[I1-1]: > od: > U[J-1] := U[J-1]/RSQ: > od: > # Step 7 > PROD := 0: > for I1 from K+1 to N do > PROD := PROD + V[I1-1]*U[I1-1]: > od: > # Step 8 > for J from K to N do > Z[J-1] := U[J-1] - 0.5*PROD*V[J-1]/RSQ: > od: > # Step 9 > for L from K+1 to N-1 do > # Step 10 > for J from L+1 to N do > A[J-1,L-1] := A[J-1,L-1]-V[L-1]*Z[J-1]-V[J-1]*Z[L-1]: > A[L-1,J-1] := A[J-1,L-1]: > od: > # Step 11 > A[L-1,L-1] := A[L-1,L-1] - 2*V[L-1]*Z[L-1]: > od: > # Step 12 > A[N-1,N-1] := A[N-1,N-1]-2*V[N-1]*Z[N-1]: > # Step 13 > for J from K+2 to N do > A[K-1,J-1] := 0: > A[J-1,K-1] := 0: > od: > # Step 14 > A[K,K-1] := A[K,K-1]-V[K]*Z[K-1]: > A[K-1,K] := A[K,K-1]: > od: > # Step 15 > print(`Choice of output method:\n`): > print(`1. Output to screen\n`): > print(`2. Output to text file\n`): > print(`Please enter 1 or 2.\n`): > FLAG := scanf(`%d`)[1]: > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`for example A:\\OUTPUT.DTA\n`): > NAME := scanf(`%s`)[1]: > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `HOUSEHOLDER METHOD\n`): > fprintf(OUP, `The similar tridiagonal matrix follows - output by rows\n`): > for I1 from 1 to N do > for J from 1 to N do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: