> restart: > # INVERSE POWER METHOD ALGORITHM 9.3 > # > # To approximate an eigenvalue and an associated eigenvector of the > # n by n matrix A given a nonzero vector x: > # > # INPUT: Dimension n: matrix A: vector x: tolerance TOL: > # maximum number of iterations N. > # > # OUTPUT: Approximate eigenvalue MU: approximate eigenvector x > # or a message that the maximum number of iterations was > # exceeded. > MULTIP := proc(N,OK,NROW,Q,A) local I2, M, IMAX, J, IP, L1, L2, JJ, I1, J1, K: > # Procedure MULTIP determines the row ordering and multipliers for the > # matrix (A-Q*I) > for I1 from 1 to N do > NROW[I1-1] := I1: > od: OK := TRUE: > I1 := 1: > M := N - 1: > while I1 <= M and OK = TRUE do > IMAX := I1: > J := I1+1: > for IP from J to N do > L1 := NROW[IMAX-1]: > L2 := NROW[IP-1]: > if abs(A[L2-1,I1-1]) > abs(A[L1-1,I1-1]) then > IMAX := IP: > fi: > od: > if abs(A[NROW[IMAX-1]-1,I1-1]) <= 1.0e-20 then > OK := FALSE: > print(`A - Q * I is singular, Q is an eigenvalue, Q = `):print(Q): > else > JJ := NROW[I1-1]: > NROW[I1-1] := NROW[IMAX-1]: > NROW[IMAX-1] := JJ: > I2 := NROW[I1-1]: > for JJ from J to N do > J1 := NROW[JJ-1]: > A[J1-1,I1-1] := A[J1-1,I1-1] / A[I2-1,I1-1]: > for K from J to N do > A[J1-1,K-1] := A[J1-1,K-1] - A[J1-1,I1-1] * A[I2-1,K-1]: > od: > od: > fi: > I1 := I1+1: > od: > if abs(A[NROW[N-1]-1,N-1]) <= 1.0e-20 then > OK := FALSE: > print(`A - Q * I is singular, Q is an eigenvalue, Q = `):print(Q): > fi: > end: > SOLVE := proc(N,B,A,Y,NROW) local M, I2, J, I1, JJ, J1, N1, L, K, N2, KK: > # Procedure SOLVE solves the linear system (A-Q*I)*Y=X given a new > # vector X and returns the solution in Y > M := N - 1: > for I2 from 1 to M do > J := I2+1: > I1 := NROW[I2-1]: > for JJ from J to N do: > J1 := NROW[JJ-1]: > B[J1-1] := B[J1-1] - A[J1-1,I2-1] * B[I1-1]: > od: > od: > N1 := NROW[N-1]: > Y[N-1] := B[N1-1] / A[N1-1,N-1]: > L := N - 1: > for K from 1 to L do J := L - K + 1: > JJ := J + 1: > N2 := NROW[J-1]: > Y[J-1] := B[N2-1]: > for KK from JJ to N do > Y[J-1] := Y[J-1] - A[N2-1,KK-1] * Y[KK-1]: > od: > Y[J-1] := Y[J-1] / A[N2-1,J-1]: > od: > end: > print(`This is the Inverse Power Method.\n`): > OK := FALSE: > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large matrices`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The array will be input from a text file in the order`): > print(`A(1,1), A(1,2), ..., A(1,N), A(2,1), A(2,2), ..., > A(2,N)`): > print(`..., A(N,1), A(N,2), ..., A(N,N)\n`): > print(`Place as many entries as desired on each line, but separate `): > print(`entries with`): > print(`at least one blank.`): > print(`The initial approximation should follow in same format.\n`): > print(`Has the input file been created? - enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext`): > print(`for example: A:\\DATA.DTA`): > NAME := scanf(`%s`)[1]: print(`The file name is`): print(NAME): > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE do > print(`Input the dimension n - an integer.`): > N := scanf(`%d`)[1]: print(`N is`): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > od: > od: > for I1 from 1 to N do > X[I1-1] := fscanf(INP, `%f`)[1]: > od: > OK := TRUE: > fclose(INP): > else print(`The number must be a positive integer.\n`): > fi: > od: > else > print(`The program will end so the input file can be created.\n`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the dimension n - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > print(`Input initial approximation vector `): > for I1 from 1 to N do > print(`input entry in position `,I1): > X[I1-1] := scanf(`%f`)[1]:print(`Data is `):print(X[I1-1]): > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OUP := default: > fprintf(OUP, `The original matrix - output by rows:\n`): > for I1 from 1 to N do > for J from 1 to N do > fprintf(OUP, ` %11.8f`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > fprintf(OUP, `The initial approximation vector is :\n`): > for I1 from 1 to N do > fprintf(OUP, ` %11.8f`, X[I1-1]): > od: > fprintf(OUP, `\n`): > OK := FALSE: > while OK = FALSE do > print(`Input the tolerance.\n`): > TOL := scanf(`%f`)[1]:print(`Tolerance = `):print(TOL): > if TOL > 0 then > OK := TRUE: > else > print(`Tolerance must be positive number.\n`): > fi: > od: > OK := FALSE: > while OK = FALSE do > print(`Input maximum number of iterations `): > print(`- integer.\n`): > NN := scanf(`%d`)[1]:print(`Maximum number of iterations = `):print(NN): > # Use NN in place of N > if NN > 0 then > OK := TRUE: > else > print(`Number must be positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > # Step 1 > # Q could be input instead of computed. > Q := 0: > S := 0: > for I1 from 1 to N do > S := S + X[I1-1] * X[I1-1]: > for J from 1 to N do > Q := Q + A[I1-1,J-1] * X[I1-1] * X[J-1]: > od: > od: > Q := Q / S: > print(`Q = `, Q): > print(`Input new Q? Enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]:print(`Input is `):print(AA): > if AA = 1 then > print(`input new Q`): > Q := scanf(`%f`)[1]:print(`Q = `):print(Q): > fi: > print(`Choice of output method:`): > print(`1. Output to screen`): > print(`2. Output to text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]:print(`Input is `):print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`for example A:\\OUTPUT.DTA\n`): > NAME := scanf(`%s`)[1]:print(`Output file is `):print(NAME): > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `INVERSE POWER METHOD\n\n`): > fprintf(OUP, `Iteration Eigenvalue Eigenvector\n`): > # Step 2 > K := 1: > for I1 from 1 to N do > A[I1-1,I1-1] := A[I1-1,I1-1] - Q: > od: > # Call subroutine to compute multipliers M(I,J) and upper triangular > # matrix for the matrix (A-Q*I) > MULTIP(N, OK, NROW, Q, A): > if OK = TRUE then > # Step 3 > LP := 1: > for I1 from 2 to N do > if abs(X[I1-1]) > abs(X[LP-1]) then > LP := I1: > fi: > od: > # Step 4 > AMAX := X[LP-1]: > for I1 from 1 to N do > X[I1-1] := X[I1-1] / (AMAX): > od: > # Step 5 > while K <= NN and OK = TRUE do > # Steps 6 and 7 > for I1 from 1 to N do > B[I1-1] := X[I1-1]: > od: > # Subroutine SOLVE returns the solution of (A-Q*I)*Y=b in Y > SOLVE(N, B, A, Y, NROW): > # Step 8 > YMU := Y[LP-1]: > # Steps 9 and 10 > LP := 1: > for I1 from 2 to N do > if abs(Y[I1-1]) > abs(Y[LP-1]) then > LP := I1: > fi: > od: > AMAX := Y[LP-1]: > ERR := 0: > for I1 from 1 to N do: > T := Y[I1-1] / AMAX: > if abs(X[I1-1] - T) > ERR then > ERR := abs(X[I1-1] - T): > fi: > X[I1-1] := T: > od: > YMU := 1 / YMU + Q: > # Step 11 > fprintf(OUP, `%3d %12.8f\n`, K, YMU): > for I1 from 1 to N do > fprintf(OUP, ` %11.8f`, X[I1-1]): > od: > fprintf(OUP, `\n`): > if ERR < TOL then > OK := FALSE: > fprintf(OUP, `Eigenvalue = %12.8f`, YMU): > fprintf(OUP, ` to tolerance = %.10e\n`, TOL): > fprintf(OUP, `obtained on iteration number = %d\n\n`, K): > fprintf(OUP, `Unit eigenvector is :\n`): > for I1 from 1 to N do > fprintf(OUP, ` %11.8f`, X[I1-1]): > od: > fprintf(OUP, `\n`): > else > # Step 12 > K := K+1: > fi: > od: > if K > NN then > fprintf(OUP, `No convergence in %d iterations\n`,NN): > fi: > fi: > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: