> restart: > # ITERATIVE REFINEMENT ALGORITHM 7.4 > # > # To approximate the solution to the linear system Ax=b when A is > # suspected to be ill-conditioned: > # > # INPUT: The number of equations and unknowns n: the entries > # A(i,j), 1<=i, j<=n, of the matrix A: the entries b(i), > # 1<=i<=n, of the inhomogeneous term b: the maximum number > # of iterations N. > # > # OUTPUT: The approximation XX(1),...,XX(n) or a message that the > # number of iterations was exceeded. > CHIP := proc(RND,R,X) local x,e: > if RND = 1 then > Digits := R: > x := evalf(X): > RETURN(x): > else > if X = 0 then > x := 0: > else > e := trunc(evalf(log10(abs(X)))): > if abs(X) > 1 then > e := e+1: > fi: > x := evalf(trunc(X*10^(R-e))*10^(e-R)): > fi: > RETURN(x): > fi: > end: > print(`This is the Iterative Refinement Method.\n`): > print(`Choice of input method`): > print(`1. input from keyboard - not recommended for large systems`): > print(`2. input from a text file`): > print(`Please enter 1 or 2.`): > FLAG := scanf(`%d`)[1]: print(`Your input is`): print(FLAG): > if FLAG = 2 then > print(`The array will be input from a text file in the order\n`): > print(`A(1,1), A(1,2), ..., A(1,n+1), A(2,1), A(2,2), ..., > A(2,n+1),..., A(n,1), A(n,2), ..., A(n,n+1)\n`): > print(`Place as many entries as desired on each line, but separate\n`): > print(`entries with `): > print(`at least one blank.\n\n\n`): > print(`Has the input file been created? - enter 1 for yes or 2 for no.`): > AA := scanf(`%d`)[1]: print(`Your response is`): print(AA): > OK := FALSE: > if AA = 1 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`for example: A:\\DATA.DTA\n`): > NAME := scanf(`%s`)[1]: > INP := fopen(NAME,READ,TEXT): > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.\n`): > N := scanf(`%d`)[1]:print(`N = `):print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > A[I1-1,J-1] := fscanf(INP, `%f`)[1]: > od: > od: > OK := TRUE: > fclose(INP): > else > print(`The number must be a positive integer\n`): > fi: > od: > else > print(`The program will end so the input file can be created.\n`): > fi: > else > OK := FALSE: > while OK = FALSE do > print(`Input the number of equations - an integer.`): > N := scanf(`%d`)[1]: print(`N= `): print(N): > if N > 0 then > for I1 from 1 to N do > for J from 1 to N+1 do > print(`input entry in position `,I1,J): > A[I1-1,J-1] := scanf(`%f`)[1]:print(`Data is `):print(A[I1-1,J-1]): > od: > od: > OK := TRUE: > else print(`The number must be a positive integer.\n`): > fi: > od: > fi: > if OK = TRUE then > OK := FALSE: > while OK = FALSE do > print(`Input maximum number of iterations.\n`): > # NN is used for the maximum number of iterations > NN := scanf(`%d`)[1]:print(`Maximum number of iterations = `):print(NN): > if NN > 0 then > OK := TRUE: > else > print(`Number must be a positive integer.\n`): > fi: > od: > OK := FALSE: > print(`Choice of rounding or chopping:\n`): > print(`1. Rounding\n`): > print(`2. Chopping\n`): > print(`Enter 1 or 2.\n`): > RND := scanf(`%d`)[1]:print(`Your input is `):print(RND): > while OK = FALSE do > print(`Input number of digits D <= 8 of rounding\n`): > DD := scanf(`%d`)[1]:print(`Number of digits = `):print(DD): > if DD > 0 then > OK := TRUE: > else > print(`D must be a positive integer.\n`): > fi: > od: > OK := FALSE: > while OK = FALSE do > print(`Input tolerance, which is usually 10^(-D).\n`): > TOL := scanf(`%f`)[1]:print(`Tolerance = `):print(TOL): > if TOL > 0 then > OK := TRUE: > else > print(`Tolerance must be a positive.\n`): > fi: > od: > if OK = TRUE then > print(`Choice of output method:\n`): > print(`1. Output to screen\n`): > print(`2. Output to text file\n`): > print(`Please enter 1 or 2.\n`): > FLAG := scanf(`%d`)[1]:print(`Your input is `):print(FLAG): > if FLAG = 2 then > print(`Input the file name in the form - drive:\\name.ext\n`): > print(`for example: A:\\OUTPUT.DTA\n`): > NAME := scanf(`%s`)[1]:print(`Output file is `):print(NAME): > OUP := fopen(NAME,WRITE,TEXT): > else > OUP := default: > fi: > fprintf(OUP, `ITERATIVE REFINEMENT METHOD\n\n`): > M := N+1: > fprintf(OUP, `Original system\n`): > for I1 from 1 to N do > for J from 1 to M do > fprintf(OUP,` %.10e`,A[I1-1,J-1]): > od: > fprintf(OUP,`\n`): > od: > if RND = 1 then > fprintf(OUP,`Rounding to %d Digits.\n`,DD): > else fprintf(OUP,`Chopping to %d Digits.\n`,DD): > fi: > fprintf(OUP,`\n Modified System \n`): > for I1 from 1 to N do > NROW[I1-1] := I1: > for J from 1 to M do > A[I1-1,J-1] := CHIP(RND,DD,A[I1-1,J-1]): > B[I1-1,J-1] := A[I1-1,J-1]: > fprintf(OUP,` %.10e`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > # NROW and B have been initialized, Gauss elimination will begin. > # Step 0 > I1 := 1: > while I1 <= N-1 and OK = TRUE do > KK := I1: > while abs(A[KK-1,I1-1]) < 1.0e-20 and KK <= N do > KK := KK+1: > od: > if KK > N then > OK := false: > fprintf(OUP, `System does not have a unique solution.\n`): > else > if KK <> I1 then > # Row interchange is necessary > IS := NROW[I1-1]: > NROW[I1-1] := NROW[KK-1]: > NROW[KK-1] := IS: > for J from 1 to M do > C := A[I1-1,J-1]: > A[I1-1,J-1] := A[KK-1,J-1]: > A[KK-1,J-1] := C: > od: > fi: > for J from I1+1 to N do > A[J-1,I1-1] := CHIP(RND,DD,A[J-1,I1-1]/A[I1-1,I1-1]): > for L from I1+1 to M do > A[J-1,L-1] := CHIP(RND,DD,A[J-1,L-1]-CHIP(RND,DD,A[J-1,I1-1]*A[I1-1,L-1])): > od: > od: > fi: > I1 := I1+1: > od: > if abs(A[N-1,N-1]) < 1.0e-20 and OK = TRUE then > OK := FALSE: > fprintf(OUP, `System has singular matrix\n`): > fi: > if OK = TRUE then > fprintf(OUP, `Reduced system\n`): > for I1 from 1 to N do > for J from 1 to M do > fprintf(OUP, ` %.10e`, A[I1-1,J-1]): > od: > fprintf(OUP, `\n`): > od: > X[N-1] := CHIP(RND,DD,A[N-1,M-1]/A[N-1,N-1]): > for I1 from 1 to N-1 do > J := N-I1: > S := 0.0: > for L from J+1 to N do > S := CHIP(RND,DD,S-CHIP(RND,DD,A[J-1,L-1]*X[L-1])): > od: > S := CHIP(RND,DD,A[J-1,M-1]+S): > X[J-1] := CHIP(RND,DD,S/A[J-1,J-1]): > od: > fi: > fprintf(OUP, `Initial solution\n`): > for I1 from 1 to N do > fprintf(OUP,` %.10e`, X[I1-1]): > od: > fprintf(OUP, `\n`): > # Refinement begins > # Step 1 > if OK = TRUE then > K := 1: > for I1 from 1 to N do > XX[I1-1] := X[I1-1]: > od: > fi: > # Step 2 > while OK = TRUE and K <= NN do > # LL is set to 1 if the desired accuracy in any component is not > # achieved. > LL := 0: > # Step 3 > for I1 from 1 to N do > R[I1-1] := 0: > for J from 1 to N do > R[I1-1] := CHIP(RND,2*DD,R[I1-1]-CHIP(RND,2*DD,B[I1-1,J-1]*XX[J-1])): > od: > R[I1-1] := CHIP(RND,2*DD,B[I1-1,M-1]+R[I1-1]): > od: > fprintf(OUP, `Residual number %d\n`, K): > for I1 from 1 to N do > R[I1-1] := CHIP(RND,DD,R[I1-1]): > fprintf(OUP, `%18.10e `, R[I1-1]): > od: > fprintf(OUP, `\n`): > # Step 4 > # Solve the linear system in the same order as in Step 0. > for I1 from 1 to N-1 do > I2 := NROW[I1-1]: > for J from I1+1 to N do > J1 := NROW[J-1]: > R[J1-1] := CHIP(RND,DD,R[J1-1]-CHIP(RND,DD,A[J-1,I1-1]*R[I2-1])): > od: > od: > X[N-1] := CHIP(RND,DD,R[NROW[N-1]-1]/A[N-1,N-1]): > for I1 from 1 to N-1 do > J := N-I1: > S := 0: > for L from J+1 to N do > S := CHIP(RND,DD,S-CHIP(RND,DD,A[J-1,L-1]*X[L-1])): > od: > S := CHIP(RND,DD,S+R[NROW[J-1]-1]): > X[J-1] := CHIP(RND,DD,S/A[J-1,J-1]): > od: > fprintf(OUP, `Vector Y\n`): > for I1 from 1 to N do > fprintf(OUP,`%18.10e `, X[I1-1]): > od: > fprintf(OUP, `\n`): > # Steps 5 and 6 > XXMAX := 0: > YMAX := 0: > ERR1 := 0: > for I1 from 1 to N do > # If not sufficiently accurate, set LL to 1. > if abs(X[I1-1]) > TOL then > LL := 1: > fi: > if K = 1 then > if abs(X[I1-1]) > YMAX then > YMAX := abs(X[I1-1]): > fi: > if abs(XX[I1-1]) > XXMAX then > XXMAX := abs(XX[I1-1]): > fi: > fi: > TEMP := XX[I1-1]: > XX[I1-1] := CHIP(RND,DD,XX[I1-1]+X[I1-1]): > TEMP := abs(TEMP-XX[I1-1]): > if TEMP > ERR1 then > ERR1 := TEMP: > fi: > od: > if ERR1 <= TOL then > LL := 2: > fi: > if K = 1 then > COND := YMAX/XXMAX*10^DD: > fi: > fprintf(OUP, `New approximation\n`): > for I1 from 1 to N do > fprintf(OUP, `%18.10e `, XX[I1-1]): > od: > fprintf(OUP, `\n`): > # Step 7 > if LL = 0 then > fprintf(OUP, `The above vector is the solution.\n`): > OK := FALSE: > else > if LL = 2 then > fprintf(OUP,`The above vector is the best possible\n`): > fprintf(OUP,`with TOL := %18.10e \n`,TOL): > OK := FALSE: > else > K := K+1: > fi > fi: > # Step 8 is not used in this implementation. > od: > if K > NN then > print( `Maximum Number of Iterations Exceeded.`): > fi: > fprintf(OUP, `Condition number is %.10e\n`, COND): > if OUP <> default then > fclose(OUP): > print(`Output file `,NAME,` created successfully`): > fi: > fi: > fi: